
Operating Systems Lecture 29 page

Knowledge - Passwords

Extremely common way of gaining
unauthorised access to computer systems.

Password guessing

• brute force – try every possible combination
The system should spend several seconds before replying and

deny access after a few attempts.
The greater the number of symbols and the length of the

password the harder it is.
Many Unix systems have a maximum password length of 8.

• intelligent search
• try default passwords (unfortunately common)
• sometimes the user hasn’t even set a password
• words associated with the user – names of friends,

relatives, pets, dates, hobbies, phone numbers, and the
same things backwards.

• common passwords – “sesame”, “password”, …
• dictionary attacks – word lists

Most commonly done when password files are extracted from
a site. Can find a very high percentage of hits.

• Substituting numbers for similar letters e.g. 3 for E.
• Typing one row higher or lower.

1 Operating Systems Lecture 29 page

Stealing passwords

Shoulder surfing

Video cameras

Snooping on a network for plain text passwords

Keyloggers

Trojan horse login screen

Keyboard sniffing
wireless keyboards
but also
can use the electromagnetic radiation emitted when keys

are pressed on wired keyboards

2

Operating Systems Lecture 29 page

Making passwords safer

1. Don’t write them down.

2. Use mixed upper and lower case letters with
numbers and symbols.

Better to use the first letters of a phrase

3. Change them regularly (but only in some
cases).

This can be enforced by the system, along with other common
password requirements.

Usually prevent the user from using an earlier version.
Unfortunately this makes it harder to remember and hence the

user is more likely to write it down.

4. Have system produced passwords.
Random but pronounceable

If people forget their passwords they need
the sys admin to give them a new one.

This also requires authentication.
Many passwords have been bullied out of sys admins over the

phone for example.

See http://xkcd.com/936/ “correct horse battery staple”

3 Operating Systems Lecture 29 page

Password files
The password has to be kept somewhere.

Either keep the password file secret or one-way encrypt
its data (preferably use both).

If the file is readable they can be broken by dictionary
attacks.

One-time passwords
a new one produced at the end of a session
security tokens - time based / algorithm based
challenge/response

Rather than memorising a password an algorithm can be
the secret.

System issues a challenge e.g. an integer.

The user responds with the value of using that integer as
input to the algorithm.

Can be made one-time by using secret seeds that are
generated each use. In this case the user needs the
algorithm (and seed) on another protected computer
or smart card.

Two-factor authentication - e.g. PIN and message sent to
your phone

4

Operating Systems Lecture 29 page

Single sign-on

With distributed environments we don’t want
people to have to sign-on to every machine
they use during a session.

• enter a password at the computer

• enter a password to use the network

• enter a password to access a server

• enter a password to use a database

• enter a password to open a table in the
database

We can use a single sign-on service – which
remembers our passwords and supplies
them to the systems that need them.

We must ensure we don't store passwords in
cleartext and that they aren't transmitted in
cleartext.

5 Operating Systems Lecture 29 page

Kerberos

Uses tickets granted by central security
servers.

Principals – users and servers.

Kerberos Authentication Server (KAS) –
checks principals at login and issues tickets
for ticket granting servers.

Ticket Granting Server (TGS) – issues tickets
to network services

Remember tickets are time expiring
capabilities.

We want two principals (A & B) to mutually
authenticate themselves.

Based on the Needham-Schroeder protocol.
But A needs to authenticate itself to a TGS
on the way to getting the service it wants
from B.

6

Operating Systems Lecture 29 page

Kerberos authentication

1. A asks KAS for a session key (for private
communication between A & TGS) and
ticket to TGS.

2. KAS returns Ticketa,tgs (includes A's ID,
network address, valid period and Ka,tgs)
along with the key Ka,tgs for A and TGS to
use. (All encrypted with A’s secret key.)

Ticketa,tgs is encrypted with TGS’s secret key,
this stops A (or any one else) modifying it.

KAS A B

TGS

2

1
3 4

5

6

7 Operating Systems Lecture 29 page

Kerberos authentication cont.

3. A asks TGS for a session key and a ticket
(capability) to talk to B. It includes
Ticketa,tgs and an authenticator proving it
comes from A (encrypted with Ka,tgs).

4. TGS replies with Ticketa,b (along with the
key Ka,b for A and B to use. (This is
encrypted with Ka,tgs.)

Ticketa,b is encrypted with B’s secret key, this
stops A (or any one else) modifying it. It
includes the key for A and B to use.

Timestamps are included in the authenticators
and random challenges (nonces) are sent as
well.

5. A sends the ticket to B along with an
authenticator (encrypted with Ka,b).

6. B replies with its own authenticator. (This is
also encrypted with Ka,b.)

8

Operating Systems Lecture 29 page

Aspects of Kerberos

How are rights (tickets) revoked under
Kerberos?

KAS and TGS databases need updating.
But tickets stay valid until they expire.
(KAS tickets about one day. TOCTTOU problem.)
There is a trade-off with TGS tickets – short expiry times

means more requests to the servers. Long expiry times
means less control but helps if some TGS servers are
occasionally out of action.

A Kerberos realm is a number of servers under
one administrative domain.
• All principals have to be registered with the KAS.
• The TGSs have to have access control information.

There can be hierarchies of realms.

The KAS and TGS servers have to be trusted,
since they generate the session keys.

Keys and tickets are held on local machines
(so each machine must be able to keep these
secret from other local processes).

9 Operating Systems Lecture 29 page

Program threats

When a user runs a program written by another
user there is always the potential for misuse.

Trojan horse
A program that has hidden side-effects.
Trojan horses can be hidden in search paths.

Spoofing attacks and phishing e.g. man-in-the-
middle or presenting fake login screens.
• This can be stopped with non-trappable key sequences

or reporting the number of unsuccessful login
attempts.

Backdoors
Leaving hidden access to the programmer.
Disgruntled employees.
Compromised compilers - producing compromised compilers.

Logic bombs
Goes off under particular circumstances.
If I don’t login every week wipe all files.

Root-kits
Replace standard commands with versions which hide the

presence of the kit. Usually used to keep access hidden.

10

Operating Systems Lecture 29 page

System threats

Worms – replicate and spread and can bring
systems to a standstill.

Performance is affected. Can lead to …

… DoS – Denial of Service (flooding) attacks
on networks.

Viruses – spread and do damage.

Viruses should not be as dangerous on multi-
user systems as usually only the individual
user’s files can be infected. Not the system
files - unfortunately not true if the user is
the superuser.

11 Operating Systems Lecture 29 page

Mobile Security

Extra problems.

Portable devices
Always with us, easy to lose/steal

Convenience required
We don’t want to make using the device difficult

How can we make it safe?

• minimise the attack surface

• code signing

• user permissions to do things

• sandboxing

12

Operating Systems Lecture 29 page

Attack Surface

What code can be run without authentication?

The less code which is reachable from outside
the better.

Many security risks have been found in 3rd
party layers such as Java and Flash
environments in browsers, and components
in pdf readers.

• Getting rid of these immediately increases the difficulty that
attackers have to find exploits (bugs which give them
access that should not be allowed).

• Removing this type of functionality is reducing the attack
surface.

13 Operating Systems Lecture 29 page

Checking before running

Only running code which has been checked
strongly reduces the chance of running
malware.

Apple’s App Store and Google’s Google Play

They perform checks on submitted apps
(playing the role of an anti-virus program).

AV programs are mostly ineffective on mobile
devices (and pretty much unnecessary on
iOS)

14

Operating Systems Lecture 29 page

Code Signing

Code signing is used for very different
purposes on iOS and Android.

In iOS Apple signs every app (all apps must
come from the App store)

This means that you can be sure the app you install and run is
the same code that Apple verified. It has not been altered.

The app is only installed if properly signed and when the
program runs each page of memory is checked to make
sure it has not been altered.

In Android apps are signed by the developer
(there is no need to use a CA). Apps can
come from anywhere (much safer if you
only get them from Google Play).

The code signing is so that updates can be verified to come
from the same developer and establishing trust between
apps.

Jailbreaking removes most of the checks on
code signing (actually allows other signers,
including self signed certs).

15 Operating Systems Lecture 29 page

Permissions

Usually not a good idea to allow all apps
access to all of the services on the device.
e.g. Granting read access to messages to an
app that doesn’t need them.

Android asks the user at install time.
Presents a list of privileges it wants. Remember that the app is

only checked by Google if you use Google Play.
Supposed to be minimal but it is up to the developer.
No explanations are given.
Most users just click “accept”.
The program is not installed if rejected.

Apple didn’t use to ask users except for
location information

If an app was passed by the App Store it could do anything it
wanted.

No longer true - now as apps request access to photos or
messages the user is asked to allow or not.

If the user turns down a permission the program is still
supposed to run (but obviously it can’t do everything).

16

Operating Systems Lecture 29 page

Sandboxing

If an app goes bad or allows an external
exploit the last protection is the sandbox.

In Android the default is files in internal
storage are only accessibly by the creating
app. (Can be made accessible to others.)

Files on external storage (SD cards) are
globally readable and writable. Not so on
iOS (trick question, why not?).

In iOS all files can only be created in the
sandboxed area and there is very limited
ability to pass information from one app to
another. (Now there are controlled ways
since iOS 8 to share data.)

17 Operating Systems Lecture 29 page

Before next time

Read from the textbook
13.3 Application I/O Interface
18.8 Input and Output
13.5 Transforming I/O to Hardware Operations

18

