
Operating Systems Lecture 28 page

Key pairs

A little bit of information on methods of
cryptography. Capabilities use
cryptography.

Information is encoded using a key.

It is decoded using either the same or another
key.

Symmetric algorithms – same key, must be
kept secret.

Asymmetric algorithms use different keys for
encrypting and decrypting (one key can be
public). The idea is that although the keys
are mathematically related it is impossible
to produce one from the other.

cipher text or
signature

plain text = P
plain text

sign or
encrypt

check or
decrypt

Ke Kd

C = e Ke(P)

P = d Kd(C)

1 Operating Systems Lecture 28 page

Public key use

We can use public key algorithms in two ways.

Make the encoding key public – then anyone
can encrypt messages but only the holder of
the private key can decrypt.

Useful for talking to a site without interception.

Make the decoding key public – then anyone
can decrypt the messages but only the
holder of the private key can encrypt them.

Useful for proving the message came from the holder of
the private key.

Capabilities can be of this form.

2

Operating Systems Lecture 28 page

Digital Signing

We need a way of proving that messages come from
who they say they are and haven't been altered on the
way.

The sender puts the message through a hash algorithm
to produce a message digest (e.g. SHA-256).

Then encrypts the digest with its secret key. This is the
digital signature for this message.

Sends the message and the signature.

The recipient uses the sender's public key to decrypt the
signature.

Also calculates the message digest on the message
(SHA-256). (Note: Microsoft, Google, Mozilla etc
will not accept SHA-1 certificates after 2017.)

Checks the local digest value with the one sent.

If they match, the message was sent by the proper
subject and was not modified on the way.

3 Operating Systems Lecture 28 page

Sharing keys

There are problems with distributing keys.

If the key is public the receiver still needs a
way of checking that the key is authentic.

If the key is private we need to ensure that
only the right domains get the key.

Solutions to checking key authenticity:

• the key can be signed and we have the key
to check the authenticity of the signature – a
trust chain

• trusted third parties – can certify that the
key (or certificate) came from the correct
source

• contact the source and check some
fingerprint

4

Operating Systems Lecture 28 page

Sharing secret keys

There are methods to cooperatively form secret
keys during sessions e.g. the Diffie-Hellman
protocol.

The parties then share a secret key but they
don’t know who the other party is.

This can be solved but requires knowing
signature verification keys.

For OSs the usual approach is to use a server
that holds secret keys for all domains. Then
we can use the Needham-Schroeder
Protocol.

5 Operating Systems Lecture 28 page

Diffie-Hellman Protocol

A and B are the parties that want to communicate
securely. They need a shared secret key.

There are two public values (one is a large prime p and
the other is related to the prime (primitive root
modulo p)).

Both parties generate a random private key. A produces
key 'a' and B produces key 'b'.

From these keys and the two original public values, both
can produce public values they transmit to each
other.

A shared secret key can then be produced by combining
the public key each gets from the other with their
private keys.

This shared key cannot easily be broken, with the public
values.

6

Operating Systems Lecture 28 page

Diffie-Hellman Protocol
http://en.wikipedia.org/wiki/Diffie-Hellman

7 Operating Systems Lecture 28 page

Diffie-Hellman Example

Public prime value p = 23, number primitive root mod p
= 5.

Alice chooses random number 6.

Generates 5**6 mod 23 = 8 (sends to Bob)

Bob chooses random number 15.

Generates 5**15 mod 23 = 19 (sends to Alice)

Alice then does 19**6 mod 23 = 2

and Bob does 8**15 mod 23 = 2

So 2 can be used as the secret key.

In use, p would be a huge number, 300 digits and the
random numbers would have about 100 digits.

8

Operating Systems Lecture 28 page

Certification

Diffie-Hellman is susceptible to Man-in-the-Middle
attacks.

So identities need to be proved. (MQV (Menezes-Qu-
Vanstone) is based on Diffie-Hellman but uses the
pre-existing public keys of both parties to include
authentication.)

Certification Authorities

A wants to prove its identity to B.

1. A makes a request to the certification authority for a signed
certificate. Includes its name and public key.

2. CA signs the message with its private key to produce a
signature (the message and signature is now the
certificate).

3. A sends the certificate to B.

4. B checks certificate using CA's public key.

CA

1 2

A B3

4

9 Operating Systems Lecture 28 page

Needham-Schroeder Protocol

A and B are the parties that want to communicate
securely.

S is the server with secret keys for A and B.
So A can communicate securely with S and B can communicate

securely with S.

A tells S it wants to talk to B.

S gives A a key for A and B to talk KAB. It also includes
a verifying message for B using B’s secret key.

A sends the verifying message to B.

B checks the message (which includes A’s identity and
the key KAB)

This algorithm is extended by Kerberos (and hence
AFS).

S

A B

But if we have a server with everyone's secret keys, we can use
the Needham-Schroeder symmetric key protocol.

10

Operating Systems Lecture 28 page

How things go wrong 
ch8 of Gollmann’s Computer Security

The three “c”s of security failure.
• change
• complacency
• convenience

Change

Odd numbered versions of software (and OSs)
commonly fix security errors.

The Mad Hacker (retrofitting security)
ICL’s VME/B information on files was owned by :SD
Added security levels. So :SD didn’t own classified file

information.
To restore from backup a new user :SD/CLASS was

added to handle this.
To stop anyone logging in as :SD/CLASS given an empty

password by patching the password file.
The wrong field was patched and caused the :SD/CLASS

user to have unlimited access.
Could only log on as :SD/CLASS from the master

console, but if the master console was turned off the
next device to open a connection became the master
console.

11 Operating Systems Lecture 28 page

Complacency

Bounds checking

fingerd – process running to handle finger
requests

Used gets library routine to get input into a buffer.
No length check.
If you know the architecture and OS you can overflow

the allocated stack space for the buffer and leave a
return address to an exec method call on the stack.

A buffer overflow attack.

The same sort of thing is possible with many
OSs and there are several cases of
unchecked buffers causing security
problems under all varieties of Windows
and Unixes.

VMS login – users could specify the machine
they wanted to access  
username/DEVICE=<machine>

The length of <machine> wasn’t checked. The user’s
privilege mask was on the stack following the buffer.
So you could overwrite the privilege mask to provide
any desired privileges.

12

Operating Systems Lecture 28 page

Preventing Stack Buffer Overflow
attacks

Buffer length checks before storing data into
the buffer/stack.

Canaries - place a random value before the
return address. If this value is modified then
the stack has been compromised.

Data Execution Protection (DEP) - use the
memory management system to not allow
execution of locations on the stack.
– Return oriented programming can get

around this
– so the OS randomises the location of our

code (ASLR - Address Space Layout
Randomisation), making it harder to work
our where code “gadgets” are

13 Operating Systems Lecture 28 page

More complacency

Syntax checking

rlogin

Can remotely login to a machine with the rlogin
command

rlogin –l username machine

On Linux and AIX some versions did not check the
syntax of the username and passed it straight on
to the login command.

login username

if the username was –froot

rlogin -l -froot machine

login -froot machine

then the person was logged in without a password
required; the –f flag means without a password
to the login command.

14

Operating Systems Lecture 28 page

Unthought through interactions

Some programs cause security problems
because of unexpected usage.

at

The Unix at command is used to run programs
at particular times.

at time –f file

puts a copy of the file into a spool directory to
be executed at the time.

at doesn’t check the read permissions when
the file is put there.

The user can read files they put in the spool
directory (copies of files they were not
allowed to read) – and then remove them to
hide the evidence.

15 Operating Systems Lecture 28 page

Convenience

Adding security makes a system less usable.

There is always a trade off between
convenience and security.

The most secure systems are very
inconvenient.

Any expert will acknowledge that it's simple to create a
totally secure computer: you simply unplug every
connection, including power, encase the thing in
concrete, and surround it with guards. By the same
token, a pair of wire cutters provides the perfect
network firewall: cut your Internet connections and
we guarantee you won't suffer from Internet-based
attacks.

 from the SideWinder site http://
www.securecomputing.com

Systems with a superuser are certainly easier
to maintain but much harder to keep secure.

16

Operating Systems Lecture 28 page

Authentication

Even the best security system can be
compromised if an intruder can successfully
impersonate a legitimate user.

There also need to be policies that stop users
sharing their identities with others.

From the OS point of view we need a way of
allowing authenticated users access to the
system but no one else.

We can use:

• possessions

• attributes

• knowledge

and combinations of these.

17 Operating Systems Lecture 28 page

Possessions

Keys or cards.

Locks can be picked and smart cards can be
analysed.

Attackers (if they have access to a card) use
techniques such as manipulating the power
supply or clock to get secret information.

The hope is that the card will get into an unknown state
and produce information it shouldn’t.

A type of fuzzing - provide random, invalid, unexpected
data and observe what happens. Used to find bugs and
security problems.

Even just observing how long it takes to
perform computations can be used to cut
down the possibilities when trying to guess
a secret key.

Of course keys and cards can be easily stolen
as well.

The theft must be reported quickly and the locks changed.

18

Operating Systems Lecture 28 page

Attributes

Physical characteristics of the user.
• palm prints
• finger prints
• iris patterns
• retina patterns
• voice print

Also the way things are done.
• typing patterns (different people type different

sequences of characters at different speeds)
• signatures – we include the speeds, directions and

pressure of different strokes

All of these biometric methods can suffer from
false positives and false negatives.

False positive – let someone have access who
shouldn’t

False negative – refuse access to a legitimate
user

The probabilities of each can be altered by
changing parameters. Best to use a
combination of techniques.

19 Operating Systems Lecture 28 page

Before next time

Read from the textbook
15.2 – Program Threats
15.3 – System and Network Threats
15.6 – Implementing Security Defenses
15.8 – Computer Security Classifications
15.9 – An Example Security Model: Windows 7 (XP)

20

