
Operating Systems Lecture 27 page

Implementing an access matrix

There is too much information required in an
access matrix.

We have cells for every combination of
domains and objects.

We could implement it as a sparse matrix but
most OSs use one of two possible
representations (and sometimes a mixture
of both).

Only hold information on the rows – each
row corresponds to the access rights of a
domain over all objects it can use. If the
domain has no rights over an object no
information is stored. This approach is
known as capability lists.

Only hold information on the columns –
each column represents the access rights
held over this object. No information is
stored about domains that have no access.
This approach is known as access lists.

1 Operating Systems Lecture 27 page

Confused Deputy Problem

This is connected with the changing domains
problem from last lecture.

A deputy is a process with special access rights
to objects. e.g., the Unix passwd program
has access to the password files.

Another process has access to the deputy. e.g.,
you can change your own password.

The process asks the deputy to do something
for it. e.g., change someone else's password

The deputy can do this but should it?
If the deputy doesn't check we have a security hole.

Capabilities remove this hole.

2

Operating Systems Lecture 27 page

Capabilities

A capability is a permission to access an object
in certain ways.

Capabilities are stored with domains. They
always refer to the object and the access
rights.

So a domain has a capability list.
<f1, “read,write”>
<f2, “execute”>
<d2, “control”>

When a process needs to access a protected
resource the capability is passed with the
request. The capability is checked by the
reference monitor to make sure the access is
permitted.

We need to ensure that a process executing in a
domain cannot freely change any of its
capabilities.

The capability list is itself a protected object.

3 Operating Systems Lecture 27 page

Keeping capabilities safe

How do we stop a process altering its
capabilities?

In particular we don’t want a process making new capabilities
without strict controls.

So capabilities should not be forgeable.

We can use hardware or encryption.

On a single machine we can store all
capabilities in protected kernel memory (so
that the user level process cannot directly
access them or add to them).

Tagged architectures – some machines have
extra bits for every word in memory. Thus
integers can be distinguished from strings
from floats from capabilities. Only the OS
is allowed to create or change capabilities.

With distributed systems we need to encrypt
capabilities. With a public key anyone can
check them but they cannot be created.

4

Operating Systems Lecture 27 page

Use of capabilities

Regardless of how they are protected –
capabilities must only be created by the OS.

When a new object is created the OS should
construct an owner capability for the creator
process.

Usually the owner can pass the capability on to
other processes (or domains).

Like a secure password – secure because the capability cannot
be forged or altered.

We must also ensure that capabilities can’t be
snooped off the network.

Capabilities are now widely used – many
microkernel OSs (like Mach) use
capabilities.

Kerberos tickets are capabilities.

5 Operating Systems Lecture 27 page

Problems with capabilities

• It is difficult to determine which domains
have access rights to a given object.

• not only are the capabilities associated with domains
but they can also be passed on – keeping track of them
is a problem.

• Similarly because it is difficult to find
references to all domains with particular
capabilities it is difficult to revoke access
permissions.

Revoking capabilities
• keep track of all domains with the capability (made

difficult if they have the capability to pass on
capabilitites)

• indirection – the capability is not really to the object
but to an intermediate object which points to the
object (we change the pointer to null). All domains
with the old capability no longer have access.

• reacquisition - have an expiry time and then request
the capability again. (In this case we need another way
of determining if the capability should be given.)

6

Operating Systems Lecture 27 page

Access Control Lists

Each object has a list of domains and their
access rights. This list is an ACL.

An access control list (ACL) could look like:
<d1, “read,write”>
<d2, “execute”>
<d3, “control”>

When a request comes to the object from a
specific domain for a particular access the
reference monitor checks the ACL to see if
the access is allowed.

ACLs don’t have any revocation problems.
The ACL just gets changed.

7 Operating Systems Lecture 27 page

AFS vs NTFS ACLs
AFS uses ACLs for its access permissions. But these are only

on directories. It has a number of possible permissions:

lock filesk

modify attributes including renamea

delete a file or directoryd

insert files in a directoryi

open and write a filew

lookup within a directoryl

open and read a file or directory contentsr

Rights per user or group in ACLFlag

There are also shorthand forms:
write = rlwidk read = rl all = rlwidak

NTFS - it is possible to access a file even if you don’t
have the directory permissions.

ownership changeownership changeO

perm. changepermissions changeP

deletedeleteD

can cd toexecuteX

modify contentsmodify contentsW

read contentsread contentsR

DirectoriesFilesFlag

8

Operating Systems Lecture 27 page

Checking your ACLs

OSs that support ACLs provide tools to deal
with them e.g. getfacl/setfacl

NT has cacls

>cacls profile

C:\Documents and Settings\...\system
\profile

 BUILTIN\Users:R

 EC\rshe019:F

 NT AUTHORITY\SYSTEM:F

 BUILTIN\Administrators:F

F – means full access.

9 Operating Systems Lecture 27 page

Problems with ACLs

They slow down file search operations – all
ACLs (which can be long) have to be
checked for all directories.

AFS imposes a limit, commonly set to 20.

They are considered by some as unnecessarily
complex:

“Ironically, for all the flexibility that ACLs
offer, they have proven to be confusing and
difficult to understand, and the extra
functionality they provide is dwarfed by the
feeling of dread which they instill in
administrators and users alike.” – Mark
Burgess, Principles of Network and System
Administration

Many prefer the simplicity of Unix file
protection mechanism.

10

Operating Systems Lecture 27 page

Reducing information

We still have the problem with lots of
permission information in our systems.

Both ACL and capability systems can have
default access to objects to reduce the
amount of necessary information.

ACLs (with hierarchical objects, such as files)
can inherit permissions from objects above
them.

A capability to a directory could give you
access to all files in the directory.

This is less flexible. What if we want to put a hidden file in the
directory which we don’t want accessed?

11 Operating Systems Lecture 27 page

UNIX permissions
UNIX associates permission bits with every file.

read/write/execute bits for files associated with the files
owner, the group and everyone

 You can change the permission code of a file or directory only
if you own it or if you have superuser authority.

The permissions are:

 r Read permission.

 w Write permission.

 x Execute permission for files, search permission for
directories.

 X Execute permission only if file is a directory or at least
one execute bit is set.

 s Set-user-ID or set-group-ID permission.

There is also a sticky bit – t permission but this depends on
the version of UNIX.

Remember that the permissions for owner, group and everyone
are checked in that order. So what permissions do I have
on this file?

-r---w-rwx 1 robert-s staff program

12

Operating Systems Lecture 27 page

Adding levels to Unix like systems

The OS is divided into separate domains.

• kernel
• system and user applications
applications are separate from each other

Each domain only has the minimum
permissions (on files, sockets, directories) it
needs to do its job.

Each domain has limited access to system calls
and file types (e.g. httpd_t)

Use a strict file typing system.

There is no global superuser.
Each domain has its own administrator and the administrator

of one domain has no power over another.

So how is global administration done?
The system is restarted with a different administration kernel

(without any connections to networks)

13 Operating Systems Lecture 27 page

Domains & types

The checking of access is built-in to the kernel
and cannot be circumvented.

14

Operating Systems Lecture 27 page

SELinux

Security Enhanced Linux

Mandatory Access Control (MAC) to all
objects represented by the file system
(including processes)

Extended attributes associated with each file
(device etc). Stored in the inode.

Policies are represented by policy files.
Policies are a set of rules governing things such as the roles a

user has access to; which roles can enter which domains
and which domains can access which types.

Particular roles can be associated with servers.
This way if one role gets compromised it
only affects its domains and types.

Normal Unix permission bits are checked first
and then SELinux checks.

15 Operating Systems Lecture 27 page

Before next time

Read from the textbook
15.2.4 – Stack and Buffer Overflow
15.4 – Cryptography as a Security Tool
If you want an extra introduction on cryptography and

other security matters (not necessary for the course)
try Computer Security, Dieter Gollmann, Wiley, 1999.

15.1 – The Security Problem
15.5 - User Authentication

16

