
Operating Systems Lecture 26 page

Protection – the mechanism of controlling
access to resources for programs, processes
and users.

Subjects – the active components in a system
that can use resources (users, programs,
processes). Also referred to as principals.

Objects – the resources being used (programs,
processes, files, memory, communication
channels, devices, databases, semaphores)

Objects can also be subjects.

We will assume that we have authenticated the
subjects, so what we are concerned with
here is how to ensure subjects only access
objects in permitted ways.

We will look at authentication in the security
section.

Protection

1

Operating Systems Lecture 26 page

Goals
Protect against

• malicious intent

• stupidity

• accident

• errors

Each object in the system has a number of operations
that can be performed on it. Not only do we not want
any other access than the permitted operations we
would also like to limit access to the minimum
required to achieve the allowed goals – the need to
know principle.

All accesses to objects should be mediated by a
reference monitor.

subject access
request

reference
monitor

object

2

Operating Systems Lecture 26 page

Examples of protection

We have already seen several examples of
protection in this course:

• Privileged instructions – the process must
be executing in kernel mode in order to
execute without causing an exception.

• Memory protection – the kernel address
space is protected from user level
instructions. Similarly one process’ address
space is protected from access by another.

• File system – one user’s files are protected
from access by another user.

What is the reference monitor in each of these
cases, how could it work?

3

Operating Systems Lecture 26 page

Protection Domains

Access rights are commonly associated with
protection domains.

A process executes inside a protection domain.
The process then has the rights and
privileges of the domain.

Thus many processes can have the same rights
if they execute in the same domain.

There are too many subjects, objects and
access rights in a normal system to
explicitly keep information about all of
them.

So this combining is the first attempt to decrease the amount
of protection information which the system needs to
maintain.

A domain is a collection of ordered pairs
<object, rights>

4

Operating Systems Lecture 26 page

Intersection of domains

Domains can overlap.

In this case the permission in the overlap is
available to both.

Our programs frequently have to move from one
domain to another.

This switching can only be allowed if the start
domain has the permission to change to another
domain.

Domains can be associated with users, locations
(e.g. URLs), programs, processes …

5

Operating Systems Lecture 26 page

Crossing domains

Crossing domains is dangerous and is
commonly used to attack systems.

Why do we need it?
We want users to have controlled access to resources they

don’t have direct access to.
e.g. a database, particular hardware, networks
So we give the user access to a program that does have access

to the restricted resource.
The user’s domain allows access to the program, the

program’s domain allows access to the resource.

UNIX
Domains are associated with users (and the groups they belong

to).
When a program is run it takes on the permissions of the user

(both individual and group permissions).
We can set programs to take on the permissions of the group

or owner of the program file instead.
The program becomes a setuid or setgid program.

6

Operating Systems Lecture 26 page

How to setuid

-rwxr--r-- 1 robert-s staff
21 Oct 8 15:36 program

bash-2.05$ chmod u+s program

-rwsr--r-- 1 robert-s staff
21 Oct 8 15:36 program

bash-2.05$ chmod o+x program

-rwsr--r-x 1 robert-s staff
21 Oct 8 15:36 program

After these changes
anyone (not in my
group) can run the
program file.

When they do so,
the process uses my
permissions. If it
wasn’t setuid then
the process would
have run with their
permissions.

This is really
dangerous,
especially if I am
the superuser. If
they can start
another process
from within the
program process
that new process
would have my
permissions as well.

7

Operating Systems Lecture 26 page

Restrict the uid
Don't use “root”; if necessary make a new user

for the program.

Reset the uid before calling exec
Or any call that might call exec.

Close unnecessary files before calling exec
If a privileged file was open it would still be

accessible.

If the program must be setuid “root” then use a
restricted root directory e.g. chroot(“/usr/hi”)

Then only files beneath /usr/hi can be reached.

Invoke subprograms using their full pathnames.
If the path gets altered it may invoke another

program (but the privileges remain)

etc

setuid precautions

8

Operating Systems Lecture 26 page

Multics ring structure

Let Di and Dj be any two domain
rings.

If j < i ⇒ Di ⊆ Dj

A process executing in Dj has more

privileges than one executing in Di.

9

Operating Systems Lecture 26 page

Multics segments

Each file is loaded as a segment. It has
associated permissions – read, write,
execute – and a ring number (the ring it
runs in or is loaded into).

Access to other segments depends on both the
current ring number, the ring number of the
other segment and the type of access
required.

The current ring number is maintained when a
lower permission ring is entered by a
process.

Sometimes a lower permission segment needs
to access a segment in a higher permission
ring.

There are specified entry points which allow this – more
access is allowed under controlled conditions.

10

Operating Systems Lecture 26 page

Other approaches to domain switches

Special directories – programs in these
directories run with the access privileges
associated with the directory.

This is safer than setuid programs because all privileged
processes must be in these directories rather than scattered
all around the system.

Have server processes running with the
necessary privileges – the normal user
processes send messages to the server
process when they need the privileged
access.

Of course a system call is a change of domain
and the hardware guarantees that when the
call returns the domain reverts to its
previous status.

All such techniques require great care.

11

Operating Systems Lecture 26 page

Access Matrix
Rows represent domains

Columns represent objects

Access(i, j) is the set of operations that a process
executing in Domaini can invoke on Objectj

12

Operating Systems Lecture 26 page

Changing permissions

When an object is created a new column is added and
the permissions are set (usually by the creator/
owner).

The domains are objects as well.
This way we can control access to the domains.
Transfer to another domain – switch e.g. a process executing in D2

can switch to D3 or D4

13

Operating Systems Lecture 26 page

Changing in a column

Copy right “*” signifies the permission can be
copied. Can only work on the same object/
column.

Owner right means any values on the object/
column can be changed.

14

Operating Systems Lecture 26 page

Changing in a row

The control right allows one domain to remove
rights from another domain.

15

Operating Systems Lecture 26 page

Before next time

Read from the textbook
14.5 – Implementation of Access Matrix
14.7 – Revocation of Access Rights
14.8 – Capability-Based Systems

Also see the Wikipedia entries on:
http://en.wikipedia.org/wiki/Confused_deputy_problem
http://en.wikipedia.org/wiki/Capabilities
http://en.wikipedia.org/wiki/Selinux

16

