
Operating Systems Lecture 25 page

Effective Access Time

Page Fault Rate 0 ≤ p ≤ 1
if p = 0 no page faults
if p = 1, every reference is a fault

Effective Access Time (EAT)

 EAT = (1 – p) x memory access
 + p (page fault overhead
 + [swap page out]
 + swap page in
 + restart overhead)

Lets say memory access (including TLB and extra page
table accesses) = 20 nsecs

overhead at both ends say 10000 instructions ≈
10000nsecs

swap page in = 4 msecs = 4 000 000 nsecs
50% of time have to swap page out = 2 000 000 nsecs

So EAT = (1 – p) x 20 + p(10000 + 6 000 000)
 ≈ 20 + 6 000 000p nsecs

1 Operating Systems Lecture 25 page

How often do we want page faults?

With

 EAT ≈ 20 + 6 000 000p nsecs

If we want the EAT to be only half as slow again as real
memory we need:

 p = 10 / 6 000 000 ≈ 0.0000016

So one page fault every 600,000 memory
accesses.

Even though the estimates were very
approximate we see that we don’t want page
faults to happen very often.

With page sizes of 4K – 8Kbytes we need lots of frames
or lots of repeated access to make the speed
acceptable.

2

Operating Systems Lecture 25 page

Reducing page faults

Different processes have different memory
access patterns and therefore different
numbers of pages they need to have in
memory at one time.

There is a minimum number we must have e.g.
with the add @x, @y instruction we saw
earlier we need at least 10 frames for each
process (otherwise this instruction may
never complete).

We can allocate frames equally or
proportionally (depending on size or
priority).

We can set minimum and maximum numbers
per process.

We really need the currently required pages in
real memory.

3 Operating Systems Lecture 25 page

Working sets
We talked of the notion of locality of reference.

The working set of a process is the collection of pages
needed in real memory in order to keep the process
running.

If we observe a process running over a short period of
time (a window) we can record the page accesses the
process makes. This is a picture of the page’s
working set.

The trick is getting the window the right size:
if it is too small not enough pages are included in the working set
if it is too big too many pages are included

Approximate with interval timer + a reference bit

A reference bit is available in the page table entry in
some architectures to indicate the page has been
accessed (read or written) since it was cleared.

Example: window = 1,000msec
Timer interrupts after every 500msec.
Keep in memory 2 bits for each page.
Whenever a timer interrupts read and then set the values of all

reference bits to 0.
If one of the bits in memory = 1 ⇒ page in working set.

4

Operating Systems Lecture 25 page

PFF

We can also use the Page Fault Frequency to
control the number of frames allocated to a
process.

As the number of frames increases the number
of page faults drops rapidly at first, then
there reaches a point where adding more
frames hardly alters the rate at which paging
occurs. We set upper and lower bounds and
add or remove frames to stay within them.

Also see the diagram on pg 431.

5 Operating Systems Lecture 25 page

Choosing pages for replacement

When there are no free frames to bring in a
page the system has to pick one to replace.

There are two main ways of selecting frames
for replacement.

Global – any frame allocated to any
process can be chosen

Local – chosen frames must come from the
processes own allocated frames

There are different consequences for these:
With the global method the number of frames for a process

varies depending on its behaviour and the behaviour of
the other processes. (The same process can run with
widely varying speed due to other processes taking some
of its frames.)

With the local scheme there are less frames to choose from.
Normally global replacement is chosen.

6

Operating Systems Lecture 25 page

We still have to pick

So of all currently occupied frames which one
is chosen.

We have some preferences:

pages that are read-only or haven’t been
modified don’t have to be written back to
disk (this saves on swapping time)

page table entries commonly have a dirty-bit to indicate the
frame has been changed since the page was loaded

pages that aren’t going to be accessed again in
the near future (so we don’t end up with
another page fault on the page we just
moved out) – unfortunately we can’t see
into the future so we rely on recent
behaviour

if we have a referenced bit we might use this to get an
approximation

7 Operating Systems Lecture 25 page

Selection algorithms

Want lowest page-fault rate.

Evaluate algorithm by running it on a
particular string of memory references
(reference string) and computing the
number of page faults on that string.

In all our examples, the reference string is

 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

and we have 3 frames.

Random
• it treats every process fairly
• easy to implement
• with enough pages the method won't replace pages

just about to be used too frequently

frame 2
frame 1
frame 0
page request

=4==1===3
==3====4=2
5==2=52===1
543215214321

8

=
=
=

Operating Systems Lecture 25 page

Selection algorithms

FIFO

Keep a list of pages in a queue. Remove the
one at the head put new ones at the tail.
• simple
• very important pages (such as part of the operating

system) which are referenced frequently will be paged
out just as frequently as pages which are hardly ever
referred to

• Belady’s anomaly – increasing the number of frames
occasionally increases the number of page faults

frame 2
frame 1

frame 0
page request

4==2==3
=3==1==2
==5==4==1

543215214321

frame 0

frame 3
frame 2

frame 1

page request

==3===4
===2===3
5===1===2
=4===5===1
543215214321

9

=
=

=

=
=
=

=
=
=

= =
= =
= =
= =

Operating Systems Lecture 25 page

Selection algorithms

Least Recently Used – LRU

Based on the assumption that a page not used
recently will not be used in the near future.

In this example not as good as FIFO –
generally better.

Why can’t LRU suffer from Belady’s
anomaly?

frame 2
frame 1
frame 0
page request

5===2==3
=4===1==2
==35==4== 1
543215214321

Very expensive – need to have hardware that
keeps track of last access time for each page.

Or maintain a list of pages and move a page to
the top of the list when accessed. Lots of
moves.

10

= =

= =
= =

Operating Systems Lecture 25 page

Approximations to LRU

Use the referenced bit – originally clear, set
when the page is used.

Keep regular track (additional reference bits)
Every 100 msecs (say) move the referenced bit into the high

bit of a value (say 8 bits), shifting all bits to the right and
clear the referenced bit for every page.

e.g.
R: 1 referenced byte: 0 0 0 1 1 1 1 1
becomes
R: 0 referenced byte: 1 0 0 0 1 1 1 1
The pages with the lowest numbers have either been used the

longest time ago (or not used as regularly).
Can select randomly from lowest valued or use a FIFO

strategy to choose.

Second chance (clock algorithm)
FIFO – but if a page has a 1 in its referenced bit when it is

chosen we don’t replace it, but clear its referenced bit
instead (and change its arrival time to be now).

Commonly implemented as a circular queue – see Figure 9.17.

11 Operating Systems Lecture 25 page

More algorithms
Least Frequently Used – LFU

• maintain a count of memory accesses for each page

• keep heavily used pages

• Pages can stay around after they are needed – can
decrease the count over time.

Most Frequently Used – MFU

• Pages with very few accesses may have just been
brought in to memory.

Neither is commonly used.

Death Row

• Put frames into a replacement pool according to
FIFO selection.

• Keep track of which page is in each frame.

• If a page is accessed while its frame is in the
replacement pool then retrieve it.

There is no penalty for paging from disk in this situation.

12

Operating Systems Lecture 25 page

Windows VMM

http://www.tenforums.com/windows-10-news/17993-windows-10-memory-compression.html

13 Operating Systems Lecture 25 page

Windows VMM
The VMM – virtual memory manager runs in the

background maintaining memory policies.
It keeps track of the free list of frames and the zeroed list.

Processes have working-set maximums and minimums.
The process is guaranteed its working-set minimum.
If the number of frames allocated is below the maximum the system

will allocate it more frames (if it can).
If there aren’t enough free frames then working-sets are trimmed to

their minimum value.
Default working-set size is 30 – VMM occasionally steals pages to see

if the page is in the working-set.

Privileged processes can lock pages in real memory
useful for real-time processes and device drivers

Clustering – when a page is brought in the pages around
it are also brought in.

Windows prefetching
When an application is started Windows observes the pages and files

referenced in the first 10 seconds.
It keeps track of these and will load all such pages the next time the

application is started.
It also defrags these files every few days.

14

Operating Systems Lecture 25 page

Thrashing

If the sum of the number of pages of the
working sets of all processes in the system
exceeds the number of frames we are in
deep trouble.

This causes thrashing.

Every page fault causes a page from the
working set of a process to be removed.

By definition the removed page is going to be
accessed soon causing another page fault.

And so on.

It severely affects the amount of work that can
be done.

Any process that falls below the number of
pages in its working set should be
suspended and swapped out (it is not going
to get any work done anyway).

15 Operating Systems Lecture 25 page

Batch system thrashing

If a batch system is set up to increase the
number of programs running in the system
at a time if the CPU utilisation gets too
small we can get thrashing very easily.

16

Operating Systems Lecture 25 page

The location of a process’ memory

Addressable memory in a UNIX or Windows
type process is scattered in different places.

page file
or swap
 space

real
memory

program
file

library
file

The file pages haven’t been loaded yet or
have been “paged out”.

The diagram gets even more complicated
with distributed shared memory and
NUMA (non-uniform memory).

read
only
data

memory-
mapped
files

17 Operating Systems Lecture 25 page

Before next time

Read from the textbook
14.1, 14.2 – Goals and Principles of Protection
14.3 – Domain of Protection
14.4 – Access Matrix

18

