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Half speed memory

In both paged and segmented memories every 
logical memory access requires (at least) 
two memory accesses.  One for the page/
segment table and one for the actual data. 

Actually the number of segments may be quite small and there 
may be registers for them. 

So the MMUs cache recent page table 
information in a special fast-lookup 
hardware cache called associative registers 
or translation look-aside buffers (TLBs)

Page # Frame #
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TLB use
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Average access times
TLB Lookup = ε time unit 

Assume memory cycle time is β 

Hit ratio – percentage of times that a page 
number is found in the associative registers; 
the ratio is related to the number of pages 
cached in the TLB. 

Hit ratio = α

Effective Access Time (EAT) 

EAT = (ε + β) α + (ε + 2 β)(1 – α) 

   = 2 β – α β + ε             

e.g. α = 0.98, β = 1, ε = 0.1 

EAT = 1.12 (compared to 2 for no TLB)
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TLB coverage
TLB coverage (or reach) is the amount of the 

address space included in the TLB entries. 

Typical TLB caches hold about 128 entries. 

With 8K pages this is only a megabyte of 
memory. 

As working sets (more on those later) increase 
this means lots of processes have a real 
performance hit, memory wise. 

The solution is larger page sizes. This means 
more internal fragmentation. More IO (in 
virtual memory systems). 

Variable page sizes can be used but they need 
clever allocation algorithms to be 
worthwhile.
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Page table size

Another problem with page tables is their 
potential size. 

e.g. 32bit address space and 4Kbyte pages (offset of 12 bits). 
So 20 bits to index into the page table ≈ a million entries 

(4Mbytes for each process) 
You can work out the equivalent for 64bit address spaces. 

Most processes do not use all memory in the 
CPUs logical address space. 

We would like to limit the page table to values that are valid. 
Can do this with a page table length register. 
Can flag page table entries with a valid bit. 

! Only allocate the parts of the page table we 
actually need. 

! Page the page table (see virtual memory)
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Multi-level page tables

How many memory 
reads for one memory 
access? 

We need a really good 
TLB hit ratio.
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Inverted page tables

As the number of address bits increases to 64 we need 
even more levels of page tables. 

Another approach is to keep information about the 
physical pages (or frames) rather than all of the 
logical pages. This is known as inverted page tables. 

Only need one page table for all processes. Each entry 
needs to refer to the process that is using it and the 
logical address in that process. 

A logical address is  
<pid, page number, displacement> 

Have to search the page table for <pid, page number>. 
Use hashtable for the page table and rely on TLBs.

Memory can’t be shared easily – 
why not?
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Paging and Segmentation

The MULTICS system solved problems of 
external fragmentation and lengthy search 
times by paging the segments. 

Different from pure segmentation in that the 
segment-table entry contains not the base 
address of the segment, but rather the base 
address of a page table for this segment.
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Programs larger than memory
It has always been the case that no matter how much 

memory a computer system has there are programs 
that need more. 

This was handled early on by overlays. 
But these required care on the part of the programmer to split the 

program up into distinct sections. 
Also any connection between the sections had to be carefully worked 

through. 

It became even more of a problem with 
multiprogramming and several programs occupying 
memory. 

Interestingly for personal computers at home there is almost no 
problem anymore – memory is so cheap. 

With multiprogramming we can swap entire processes 
out to disk to provide space for others (and swap 
back in to run). 

The disk is known as backing store. 
Must be able to hold all memory for all processes. 
Swapping is slow – especially if done at every process context switch. 
Does the process have to be swapped back in to the same memory 

space? 
Early UNIX used to swap. We still use variants of swapping.
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Does it all have to be there?

Overlays provide the hint. 

We can execute programs without the entire 
program being in memory at once. 

Can keep either pages or segments on disk when 
not needed. 

The logical address space can be larger than the 
physical. We call these virtual and real 
address spaces when we have virtual memory. 

This has many advantages: 

• unused code doesn’t waste physical memory 

• we have more memory for multiple processes 

• we don’t need to load the whole program into 
memory at once – hence speeding up 
responsiveness to commands 

Why does it work?
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Locality of reference

In almost all programs if we look at their 
memory access over a short period of time 
(a window) we see that only a small amount 
of the programs address space is being used. 

Each memory access is very probably going to 
be near another recent memory reference.  

True for both code and data. 
But it is possible to write programs that don’t do this. e.g. 

arrays stored as rows accessed by columns. 

This is known as the principle of locality of 
reference.  

Programs do not reference memory with a 
random distribution. 

See Figure 9.19 for a graphical snapshot of 
program memory accesses.
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Paging
Virtual memory is commonly provided with paged 

memory. 

There are extra bits stored in each page table entry (and 
some of them in corresponding TLB entries) e.g.

V A M addresspage #

V – valid bit, is the page currently in real 
memory? 

A – access bits – how can this page be 
accessed, read/write/execute? 

M – mode bits – which mode does the 
processor have to be in when it uses this page 

Other bits could be there too (see later) 

address – either the frame number or the 
address on the disk device where this page is 
currently stored
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Work for the OS

So when a page is accessed the page table 
entry indicates whether the page is currently 
in real memory or whether it is in a paging 
file (or swap space) on disk. 

The MMU happily takes care of the translation 
between logical addresses and physical 
addresses when all pages are in real 
memory. 

If a page is not in real memory it is up to the 
memory management system to 

• allocate real memory for the page 

• move pages from disk into memory 

• indicate when the page is now ready 

To do this several design decisions need to be 
made.
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Moving pages into swap space

Different systems move pages into swap space 
at different times: 

• allocate space for the entire process in swap 
space (this is usually allocated 
continuously) 

• this slows down the startup time for processes 
• but it can speed up later operation 
• possible complications as processes grow 

• allocate when the page is accessed the first 
time 

• quick startup 
• all accessed pages have a copy in swap space (even if 

in real memory as well) 
• new accesses are slowed down 

• only allocate when a page is swapped out 
• don’t use swap space at all unless necessary 

• only allocate space for changed data 
• code, libraries and read-only data can have their 

virtual memory in their normal files (requires 
cooperation between paging system and file system – 
uniform storage structures)
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Demand paging

Demand paging is concerned with when a page 
gets loaded into real memory. 

When a process starts all of its memory can be 
allocated (and loaded). 
• if there is not enough real memory available it has to 

be taken away from pages currently used 
• if there is still not enough some has to go into swap 

space 
• loading a large program can have a severe penalty on 

other processes in the system (and the overall amount 
of work done) 

Demand paging only brings a page into real 
memory when the page is used by the 
process. 
• when a process runs it is allocated memory space but 

it all points to the swap space (or somewhere else) 
• actually most demand paging systems do load in the 

first few pages so that the program can start without 
lots of page faults (not pure demand paging)
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Page faults

If ever a memory access finds the valid bit of 
the page table entry not set we get a page 
fault. 

• The processor jumps to the page fault 
handling routine. 

• Checks if the page is allocated (if not we 
have a memory violation). 

If allocated (but not in a frame) 
• find a free frame (possibly create one) 
• read the page from the swap space into the 

frame 
• fix the page table entry to point to the frame 
if the page is shared then multiple entries must be fixed 

• restart the instruction that caused the fault 
instructions must be restartable 

See Figure 9.6
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The problems of one instruction

Different architectures make the task of paging 
easier or harder. 

Some architectures can access many pages 
with one instruction. 

e.g. add @x, @y  
This instruction could cause 6 memory accesses and in the 

worst case 10 page faults. 

The requirement to restart is also a problem 
Autoincrement and autodecrement instruction operands need 

to be restored to their original values before restarting the 
instruction. 

This can be done with extra registers holding initial values or 
changes. 

Block moves are also a problem - part way through the move 
there is a page fault. 

We don’t want to restart the instruction. 
Can solve this by checking pages for validity beforehand or 

maintaining extra registers tracking progress.
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Question
I have 8GB of memory in my laptop. 

The boot drive (which includes any swap space) 
is 256GB. 

The swap space when I looked was 1.5GB. 

The amount of virtual memory reported by the 
system is more than 300GB. 

How is this possible? 
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Before next time

Read from the textbook 

9.5 – Allocation of Frames 
9.4 – Page Replacement 
9.6 – Thrashing 
9.10 – Operating-System Examples 
19.3.3.2 – Windows Virtual-Memory Manager
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