
Operating Systems Lecture 24 page

Half speed memory

In both paged and segmented memories every
logical memory access requires (at least)
two memory accesses. One for the page/
segment table and one for the actual data.

Actually the number of segments may be quite small and there
may be registers for them.

So the MMUs cache recent page table
information in a special fast-lookup
hardware cache called associative registers
or translation look-aside buffers (TLBs)

Page # Frame #

1 Operating Systems Lecture 24 page

TLB use

2

Operating Systems Lecture 24 page

Average access times
TLB Lookup = ε time unit

Assume memory cycle time is β

Hit ratio – percentage of times that a page
number is found in the associative registers;
the ratio is related to the number of pages
cached in the TLB.

Hit ratio = α

Effective Access Time (EAT)

EAT = (ε + β) α + (ε + 2 β)(1 – α)

 = 2 β – α β + ε

e.g. α = 0.98, β = 1, ε = 0.1

EAT = 1.12 (compared to 2 for no TLB)

3 Operating Systems Lecture 24 page

TLB coverage
TLB coverage (or reach) is the amount of the

address space included in the TLB entries.

Typical TLB caches hold about 128 entries.

With 8K pages this is only a megabyte of
memory.

As working sets (more on those later) increase
this means lots of processes have a real
performance hit, memory wise.

The solution is larger page sizes. This means
more internal fragmentation. More IO (in
virtual memory systems).

Variable page sizes can be used but they need
clever allocation algorithms to be
worthwhile.

4

Operating Systems Lecture 24 page

Page table size

Another problem with page tables is their
potential size.

e.g. 32bit address space and 4Kbyte pages (offset of 12 bits).
So 20 bits to index into the page table ≈ a million entries

(4Mbytes for each process)
You can work out the equivalent for 64bit address spaces.

Most processes do not use all memory in the
CPUs logical address space.

We would like to limit the page table to values that are valid.
Can do this with a page table length register.
Can flag page table entries with a valid bit.

! Only allocate the parts of the page table we
actually need.

! Page the page table (see virtual memory)

5 Operating Systems Lecture 24 page

Multi-level page tables

How many memory
reads for one memory
access?

We need a really good
TLB hit ratio.

6

Operating Systems Lecture 24 page

Inverted page tables

As the number of address bits increases to 64 we need
even more levels of page tables.

Another approach is to keep information about the
physical pages (or frames) rather than all of the
logical pages. This is known as inverted page tables.

Only need one page table for all processes. Each entry
needs to refer to the process that is using it and the
logical address in that process.

A logical address is  
<pid, page number, displacement>

Have to search the page table for <pid, page number>.
Use hashtable for the page table and rely on TLBs.

Memory can’t be shared easily –
why not?

7 Operating Systems Lecture 24 page

Paging and Segmentation

The MULTICS system solved problems of
external fragmentation and lengthy search
times by paging the segments.

Different from pure segmentation in that the
segment-table entry contains not the base
address of the segment, but rather the base
address of a page table for this segment.

8

Operating Systems Lecture 24 page

Programs larger than memory
It has always been the case that no matter how much

memory a computer system has there are programs
that need more.

This was handled early on by overlays.
But these required care on the part of the programmer to split the

program up into distinct sections.
Also any connection between the sections had to be carefully worked

through.

It became even more of a problem with
multiprogramming and several programs occupying
memory.

Interestingly for personal computers at home there is almost no
problem anymore – memory is so cheap.

With multiprogramming we can swap entire processes
out to disk to provide space for others (and swap
back in to run).

The disk is known as backing store.
Must be able to hold all memory for all processes.
Swapping is slow – especially if done at every process context switch.
Does the process have to be swapped back in to the same memory

space?
Early UNIX used to swap. We still use variants of swapping.

9 Operating Systems Lecture 24 page

Does it all have to be there?

Overlays provide the hint.

We can execute programs without the entire
program being in memory at once.

Can keep either pages or segments on disk when
not needed.

The logical address space can be larger than the
physical. We call these virtual and real
address spaces when we have virtual memory.

This has many advantages:

• unused code doesn’t waste physical memory

• we have more memory for multiple processes

• we don’t need to load the whole program into
memory at once – hence speeding up
responsiveness to commands

Why does it work?

10

Operating Systems Lecture 24 page

Locality of reference

In almost all programs if we look at their
memory access over a short period of time
(a window) we see that only a small amount
of the programs address space is being used.

Each memory access is very probably going to
be near another recent memory reference.

True for both code and data.
But it is possible to write programs that don’t do this. e.g.

arrays stored as rows accessed by columns.

This is known as the principle of locality of
reference.

Programs do not reference memory with a
random distribution.

See Figure 9.19 for a graphical snapshot of
program memory accesses.

11 Operating Systems Lecture 24 page

Paging
Virtual memory is commonly provided with paged

memory.

There are extra bits stored in each page table entry (and
some of them in corresponding TLB entries) e.g.

V A M addresspage #

V – valid bit, is the page currently in real
memory?

A – access bits – how can this page be
accessed, read/write/execute?

M – mode bits – which mode does the
processor have to be in when it uses this page

Other bits could be there too (see later)

address – either the frame number or the
address on the disk device where this page is
currently stored

12

Operating Systems Lecture 24 page

Work for the OS

So when a page is accessed the page table
entry indicates whether the page is currently
in real memory or whether it is in a paging
file (or swap space) on disk.

The MMU happily takes care of the translation
between logical addresses and physical
addresses when all pages are in real
memory.

If a page is not in real memory it is up to the
memory management system to

• allocate real memory for the page

• move pages from disk into memory

• indicate when the page is now ready

To do this several design decisions need to be
made.

13 Operating Systems Lecture 24 page

Moving pages into swap space

Different systems move pages into swap space
at different times:

• allocate space for the entire process in swap
space (this is usually allocated
continuously)

• this slows down the startup time for processes
• but it can speed up later operation
• possible complications as processes grow

• allocate when the page is accessed the first
time

• quick startup
• all accessed pages have a copy in swap space (even if

in real memory as well)
• new accesses are slowed down

• only allocate when a page is swapped out
• don’t use swap space at all unless necessary

• only allocate space for changed data
• code, libraries and read-only data can have their

virtual memory in their normal files (requires
cooperation between paging system and file system –
uniform storage structures)

14

Operating Systems Lecture 24 page

Demand paging

Demand paging is concerned with when a page
gets loaded into real memory.

When a process starts all of its memory can be
allocated (and loaded).
• if there is not enough real memory available it has to

be taken away from pages currently used
• if there is still not enough some has to go into swap

space
• loading a large program can have a severe penalty on

other processes in the system (and the overall amount
of work done)

Demand paging only brings a page into real
memory when the page is used by the
process.
• when a process runs it is allocated memory space but

it all points to the swap space (or somewhere else)
• actually most demand paging systems do load in the

first few pages so that the program can start without
lots of page faults (not pure demand paging)

15 Operating Systems Lecture 24 page

Page faults

If ever a memory access finds the valid bit of
the page table entry not set we get a page
fault.

• The processor jumps to the page fault
handling routine.

• Checks if the page is allocated (if not we
have a memory violation).

If allocated (but not in a frame)
• find a free frame (possibly create one)
• read the page from the swap space into the

frame
• fix the page table entry to point to the frame
if the page is shared then multiple entries must be fixed

• restart the instruction that caused the fault
instructions must be restartable

See Figure 9.6

16

Operating Systems Lecture 24 page

The problems of one instruction

Different architectures make the task of paging
easier or harder.

Some architectures can access many pages
with one instruction.

e.g. add @x, @y
This instruction could cause 6 memory accesses and in the

worst case 10 page faults.

The requirement to restart is also a problem
Autoincrement and autodecrement instruction operands need

to be restored to their original values before restarting the
instruction.

This can be done with extra registers holding initial values or
changes.

Block moves are also a problem - part way through the move
there is a page fault.

We don’t want to restart the instruction.
Can solve this by checking pages for validity beforehand or

maintaining extra registers tracking progress.

17 Operating Systems Lecture 24 page

Question
I have 8GB of memory in my laptop.

The boot drive (which includes any swap space)
is 256GB.

The swap space when I looked was 1.5GB.

The amount of virtual memory reported by the
system is more than 300GB.

How is this possible?

18

Operating Systems Lecture 24 page

Before next time

Read from the textbook

9.5 – Allocation of Frames
9.4 – Page Replacement
9.6 – Thrashing
9.10 – Operating-System Examples
19.3.3.2 – Windows Virtual-Memory Manager

19

