
Operating Systems Lecture 22 page

Distributed Systems
A distributed system is ...

 "one on which I cannot get any work done because
some machine I have never heard of has crashed".

• Loosely-coupled

• network connection

• could be different OSs, or different parts of the OS

• processes must communicate via messages

What advantages does a network of sites offer?

• More work can get done

• Ability to share devices, programs and data

• Greater reliability

• Easier to expand

1 Operating Systems Lecture 22 page

Two Phase Commit Protocol
With distributed systems we want to ensure that if
something goes wrong at one site we don’t end up with
inconsistent data.

A “transaction” is some event that has to be completely
successful or not done at all (atomic).

We need stable storage – usually replicated on several
devices – can be done with two copies.

• make the change to one (check for success)
• make the change to the other (check for success)
• if ever the copies disagree copy the original data from the

second back to the first

2PC – transaction coordinator and all sites involved in a
transaction have stable storage logs.

All transactions can be undone and redone safely.

Log entries and messages

Commit request phase
<prepare> - started the protocol, sent to all sites
<ready> - recorded and returned if ok, <abort> if not ok

Commit phase
<commit> - if all reply in time, sent to all sites
<abort> - sent by coordinator to all sites if something went wrong

2

Operating Systems Lecture 22 page

Network & Distributed Operating Systems

Network OS
• Communications layer on top of a normal OS.
• Possibly different OS.
• User is aware of different machines.
• Some can copy files across the network but not share

them. e.g. ftp
In this case the file location is explicitly known.

• Others can share files but the location is still part of
the name.

Distributed OS

Aim to have the system look like one machine.

There is no difference (except speed) between
accessing local and remote resources
(location transparency).

The Distributed OS can move resources and
processes (migration transparency).

3 Operating Systems Lecture 22 page

Remote Procedure Calls (RPC)
Birrell & Nelson 1984

Hide the message passing system so that it looks like a
series of procedure calls.

Most requests for service wait until the request is
fulfilled – semantically just like a procedure call.

Programmer doesn’t have to package and unpackage
data in the messages.

Also adds flexibility because sometimes the service
might actually be local.

4

Operating Systems Lecture 22 page

Client and Server stubs
• Client makes ordinary procedure call to the local

stub.

• Stub marshals parameters (may need to locate server
as well).

• Stub sends request via local kernel.

• Remote kernel passes request to Server stub.

• Server stub unpacks message request and
parameters.

• Makes ordinary procedure call to Server.

• And then vice-versa.

The stubs at both ends need to be constructed from the
same interface specification - to ensure consistency.

Care has to be taken about different versions of the
service. A different version may take slightly
different parameters or return different types etc.

5 Operating Systems Lecture 22 page

RPC messages
Messages are highly structured
what procedure to execute
parameters
version number (service may survive a long time and code may be

written to different versions)
timestamp (could be used for synchronization purposes)
source address
where to send the results
possibly the type of machine the request comes from

Finding the server
• include port numbers at compile time or
• have a binder or rendezvous/matchmaker service

Server usually registers with a binder or name server

client end sends the request to find the server

multiple servers – the binder can spread the load

binder can periodically check on servers - deregistering
those that don't respond

binder could do the security work
otherwise servers have to check each call

6

Zero Configuration

Operating Systems Lecture 22 page

There are many different zero configuration
services which don’t require a binder.

Zeroconf (Apple’s Bonjour)
Multicast DNS - is “service” here?
Flexible - protocols can be decided at access time

UPnP - Universal plug and play
A UPnP device can join a network and get an IP address
Announce its name to control points
Provide a list of its functions
Interrogate other devices
Protocols are strictly defined

Both are designed for small LANs.

Service Discovery

7 Operating Systems Lecture 22 page

Marshalling

Heterogeneous networks. �
Data formats in the different machines may
be different.

• ASCII, Unicode, EBCDIC for strings

• Big or little endian for integers

• Different floating point formats

Stubs need to know about this.

Different solutions

client stub converts to the server format

server stub converts from the client format

convert to and from a canonical format
no one needs to know other machines formats
(we don't want to have to convert from format A to canonical

to A and then back again)
e.g. NFS’s XDR - external data representation

8

Operating Systems Lecture 22 page

Reference parameter problem
The references no longer make sense.

• either disallow reference parameters

• or copy the parameter to and fro

• either in one chunk or whenever the server makes a
change to it

(this is just like distributed shared memory)

Copy/restore semantics aren't quite the same.

• e.g. pointer as a reference parameter

• the same parameter passed twice in the parameter list
we can check for this

Sometimes we don't need to copy the data both ways �
e.g. input buffer (only needs to be copied from the
server to the client) �
Our interface specification should be able to express
this.

9 Operating Systems Lecture 22 page

RMI & CORBA & DRb

Remote Method Invocation
Java technology
RPC with objects
Solves object reference problem by sending serialized versions

of the object. If the object passed as a parameter is itself
actually on the remote site it is just sent by reference.

Common Object Request Broker Architecture
Similar to RMI
Works with a wide variety of languages – not just Java
Needs a common description language to specify interfaces –

IDL Interface Definition Language

Distributed Ruby
Very similar but simpler than Java RMI. Normally objects are

passed by copying. If you
include DRbUndumped
in a class then all references to such objects are sent back to

the original object.

10

Operating Systems Lecture 22 page

Linda tuplespace

Another technique to share services over a
network. Rather than explicitly sending
messages we can share data in a tuplespace.

The tuplespace is a logically shared
(sometimes distributed) memory consisting
of tuples. A tuple is a list of parameters,
some of which are empty, e.g, <”hi”, 15,
12.5>

Tuples are put into the tuplespace by the “out”
or “write” primitive and retrieved from the
tuplespace by matching contents and types
with the “in” or “take” primitive. The
example above could be matched with
<”hi”, _, _>

JavaSpaces are an implementation of Linda
tuplespaces. Rinda is the Ruby version of
Linda. Linda originally worked with C and
Fortran. lindypy is a Python 2.6
implementation.

11 Operating Systems Lecture 22 page

Rinda example
Provides a TupleSpace and waits for broadcast
messages to find it.

require 'rinda/ring'
require 'rinda/tuplespace'

DRb.start_service
Rinda::RingServer.new(Rinda::TupleSpace.new)
DRb.thread.join

Finds the TupleSpace by broadcasting,
then acts as a simple service.

require 'rinda/ring'

DRb.start_service
tuple_space = Rinda::RingFinger.primary
take the question
question = tuple_space.take([Numeric, Numeric])
put the answer
tuple_space.write([question[0]+question[1]])

Finds the TupleSpace by broadcasting,
then acts as a client.

require 'rinda/ring'

DRb.start_service
tuple_space = Rinda::RingFinger.primary
put something in the tuplespace
tuple_space.write([1, 2])
read the answer
answer = tuple_space.take([Numeric])[0]
puts answer

12

Operating Systems Lecture 22 page

Tuplespace advantages

Processes don't communicate directly with
each other but instead access the tuplespace.
It doesn't matter if one process dies, as long
as another that deals with the same tuple is
available (and the tuple hasn't been removed
yet).

Tuplespace problems scale naturally. Adding
more processes which handle particular
requests is trivial.

(The tuplespace itself doesn't scale well. It is
usually stored on one server. It can become
a bottleneck. There are techniques to
replicate tuplespaces.)

The space itself deals with synchronization.
Each tuple operation is atomic.

13 Operating Systems Lecture 22 page

Process Migration

Moving a process from one site to another
while it is running.

Why would we like to do process migration?

• To enable us to do proper load balancing.

• If the process can be subdivided we can
increase performance by having different
parts running simultaneously on different
machines.

• To move the process closer to the resources
it is currently accessing.

• To move the process closer to the user.

• To enable us to keep a process going when
the site it is executing on has to be taken
down.

14

Operating Systems Lecture 22 page

What do we need?

We need location and migration transparency
of

processes
resources used by the process

What defines a process?
• PCB
• Resources

• files
• communication channels
• memory
• devices - including windows, keyboard, mouse

• Threads

Need some compatible machine (or virtual
machine) architecture.

Internal and external reference problems

• References to resources within the program.

• References to the process from outside e.g.
other processes communicating with it.

15 Operating Systems Lecture 22 page

How can that be done?

Need a way of referring to all resources
indirectly via global tables (like we did with
our distributed file systems).

We can extend the ideas of a distributed file
system to refer to other objects, including
processes.

All process identifiers have no host
information in the identifier.

e.g.
• A process table keeps track of which site each process

is running on.
• When the process is moved the table is updated.
• Caching of information can be used for efficiency but

we need ways to recover when the cache data is out of
date.

• Not all processes need to be stored in this table.
• Processes specific to a site which are not visible

away from the site.

16

Operating Systems Lecture 22 page

Doing the migration

Minimise the amount of down time

Process must be stopped at some stage

Stop, copy, notify

How much do we copy?

Only the working set
get the remaining pages by demand paging
Can’t be used if the host is going down.

Everything, but don't stop the process
then copy pages which were dirtied during the copy

Both approaches only stop the process while
the working set is moving.

17 Operating Systems Lecture 22 page

Current uses
In reality process migration is not used for load

balancing.

It is too expensive.
• Most processes only run for a few seconds.
• Transferring a process can easily take a few seconds.

It is still useful when a machine needs to be closed
down for maintenance and it has running processes
which we don't want to kill. �
Common use - idle workstations

Move processes when no longer idle.

• Generally load balancing is only done when a
process starts

• or when it has to move.

• Where is the best place to run this process?

The textbook also talks about Computation Migration –
this means sending messages (or RPCs) to get work
done on another site.

18

Operating Systems Lecture 22 page

Before next time

Read from the textbook
8.1 – Background
8.3 – Contiguous Memory Allocation
8.5 – Paging
8.4 – Segmentation

Interesting read on Windows 8 memory management
http://arstechnica.com/information-technology/

2011/10/how-windows-8s-memory-
management-modifications-make-for-a-
better-user-experience/

19

