
Operating Systems Lecture 19 page

Runtime file data structures

Now that we know how the information can be
represented on the disk we need to know
about the data structures the OS maintains
when we use a file.

System wide open file table
The system must keep track of all open files.
Information from the on-disk file control block

(these must be kept consistent).

Which processes are accessing the file?
How is the file being accessed?

Process open file table
A pointer to the system open file table.
Current file position (for sequential reading or

writing).
A pointer to the buffer being used for this file

by the process.

The file buffer
Data is read in block (or cluster) amounts.

1 Operating Systems Lecture 19 page

UNIX runtime file structures

Here we see

• the on disk inodes and data blocks

• the incore copy of the inode, this includes
the reference count

• the system wide open file table (file-structure
table), this actually stores one entry for every
time the file was opened

• the process open file table, just an array of
pointers to the file-structure table

What would a fork do?

2

Operating Systems Lecture 19 page

twice.py
import os

file = open("temp", "w")
file.write("before the fork") # 15
#file.flush()

if os.fork() == 0: # in the child
 print("child: {}".format(file.tell()))
 print("child: {}".format(file.tell()))
else: # in the parent
 print("parent: {}".format(file.tell()))
 print("parent: {}".format(file.tell()))
file.close()

Produces the following output (without flushing):
$ python3 twice.py
parent: 15
parent: 30
child: 30
child: 30

$ python3 twice.py
parent: 15
child: 30
parent: 30
child: 30

$ python3 twice.py
parent: 15
parent: 15
child: 30
child: 30

UNIX fork interaction

3 Operating Systems Lecture 19 page

Opening and closing files
Most systems require some open call to make the

connection between a process and a file.

The open call does several things (not all OSs do all of
these):

• searches for the file with that name

• verifies that the process has access rights to use the
file in the way specified

• this means we don’t check after this
• this can be a security problem, sometimes referred to as the

TOCTTOU (time of check to time of use) problem

• records the fact that the file is open (in the system-
wide open file table) and which process is using it

• constructs an entry in the process open file table

• allocates a buffer for file data

• returns a pointer (file handle or file descriptor) to be
used for future access

4

Operating Systems Lecture 19 page

Opening a file in UNIX

open(filename, type of open)

e.g.

fd = open("OS/test/answers", O_RDWR);

convert filename to an inode – this also copies
the on-disk inode into memory (if not
already there) and locks the inode for
exclusive access

if file does not exist or not permitted access
 return error
allocate system-wide file table entry, points to

incore inode, increment the count of open
references to the file

fill per-process file table entry with pointer to
system-wide file table entry

unlock the inode
return the index into the per-process file table

entry (known as the file descriptor)

5 Operating Systems Lecture 19 page

UNIX write system call

write(fd, buffer, count)

get file table entry from fd
check accessibility
lock inode
while not all written
 if a block doesn't exist for the current

position
 allocate one - updates the inode
 if not writing a complete block
 read the block in
 put the data in the block's buffer �

delay write the block (some later time) �
update file offset, amount written

update file size
unlock the inode

6

Operating Systems Lecture 19 page

Delay write

Buffers are shared by the system. �
The write doesn't occur until another
process is to use the buffer for a different
block (LRU replacement) or a daemon
process flushes it.

Advantage �
if a process wants to access this information
it is already/still in memory �
e.g. process writes some more and it fits in
the same block

Disadvantage �
information is not written immediately �
usually a daemon process writes data
buffers after 30 secs, metadata buffers after
5 secs �
sync command forces buffers to write

7 Operating Systems Lecture 19 page

UNIX append

If the file has been opened in append mode
O_APPEND then there is a possible race
condition.

Before each write the file position pointer is
moved to the length of the file.

What if another write changes the length of the
file before this write completes?

The file system must guarantee atomicity for
the append write operation.

That is why there is an append mode for
opening a file.

8

Operating Systems Lecture 19 page

Before next time

Read from the textbook
22.5.2 – NTFS Recovery

If you want to read about versioning systems
C.A.N. Soules, G.R. Goodson, J.D. Strunk, G.R. Ganger,
Metadata Efficiency in a Comprehensive Versioning System,

Technical Report, School of Computer Science, Carnegie
Mellon University

You may also want to read about ZFS on
Wikipedia.

17.2.1 – Network Operating Systems
17.9.1 – Naming and Transparency
11.5.3 – Consistency Semantics
17.9.2 – Remote File Access

9

