
Operating Systems Lecture 17 page

Representing files on disk

We know that disks deal with constant size
blocks. All files and information about files
must be stored in these blocks (usually
accessible via a logical block number).

We need to know what we want our file
system to look like to the users in terms of
its structure.

We also need to know how we can place the
required information on the disk devices.

1 Operating Systems Lecture 17 page

Structure

Data about files and other information about storage on
a device is called metadata.

Usually a disk device has one or more directories to
store metadata.

These directories can be arranged in different ways:

single level – simple, small systems did this, especially
with small disk devices (floppies)

Disadvantages in finding files as the number of files
grows (some implementations use a B-tree).

To be workable it requires very long filenames.

2

Operating Systems Lecture 17 page

Multiple levels
two level – The top level (master file directory) is one

entry per user on a multi-user system, the next level
(user file directory) looks like a single level system
to each user.

Creating a user file directory is usually only allowed
for administrators.

User file directories can be allocated like other files.
What about the master file directory?

When people log in they are placed within their own
directories. Any files mentioned are in that
directory.

Can use full pathnames to refer to other user’s files (if
permissions allow it).

3 Operating Systems Lecture 17 page

Normal file hierarchy

tree – as many directories as required. This
facilitates the organisation of collections of
files.

Directories are special files. Should users be
able to write directly to their own directories?

4

Operating Systems Lecture 17 page

Sharing files and directories
We commonly want the same data to be accessible from

different places in the file hierarchy. e.g. Two people
might be working on a project and they both want
the project to be in their local directories.

This can be accomplished in several different ways:

• If the data is read only we could just make an extra
copy.

• We could make two copies of the file record
information (not the data).

There is a problem with consistency.

• There can be one true file entry in one directory.
Other entries have some reference to this entry.

UNIX symbolic links and Windows shortcuts.

• There can be a separate table with file information.
Then all directory entries for the same file just point
to the corresponding information in this table.

UNIX and NTFS hard links.

5 Operating Systems Lecture 17 page

Hard links
UNIX

ln ExistingFilename NewFilename

Each directory entry stores a pointer to the file’s inode
(more on those soon) which holds the real
information about the file.

NTFS

fsutil hardlink create NewFilename ExistingFilename

Each directory entry holds copies of most file attributes
plus a pointer to the file’s Master File Table (MFT)
file record (more on those soon).

NTFS updates the properties of a hard link only when a
user accesses the original file by using the hard link.

Hard links do not have security descriptors; instead,
the security descriptor belongs to the original file to
which the hard link points.

Both only make links on the same volume.

6

Operating Systems Lecture 17 page

UNIX symbolic links

The file called
“linkFile” is
actually just a text
file with the
contents “realFile”.

The OS knows to
treat it differently
from other text
files because of the
“l” in the attributes
on the left hand
side.

If the original is
moved then UNIX
can’t do anything
about it. You get
unable to open
errors for example.

$ ls -al
total 1
drwxr-xr-x 2 Robert None 0 Sep 14 16:59 .
drwxr-xr-x 3 Robert None 0 Jul 16 16:56 ..
-rw-r--r-- 1 Robert None 304 Sep 12 10:34 .bash_history
-rw-r--r-- 1 Robert None 0 Sep 14 16:59 realFile

$ ln -s realFile linkFile

$ ls -l
total 0
lrwxrwxrwx 1 Robert None 8 Sep 14 16:59 linkFile -> realFile
-rw-r--r-- 1 Robert None 0 Sep 14 16:59 realFile

7 Operating Systems Lecture 17 page

Windows shortcuts

Make a file. e.g. test.txt.

Make a shortcut to the file.

Rename the original to “test”.

By default Windows uses
attributes such as file type,
size and time of
modification to find
renamed shortcuts.

Much better under NTFS
with the Distributed Link
Tracking Client service
running.

This keeps a log of changes made to
files that have shortcuts. So the file
can almost always be found.

It even works in distributed
environments (sometimes).

15/09/2002 01:25 p.m. 615 Shortcut to test.txt.lnk

15/09/2002 01:24 p.m. 54 test.txt

8

Operating Systems Lecture 17 page

Mac aliases

HFS+ has a unique, persistent identifier for
each file or folder.
An alias stores this identifier with the
pathname.

Originally the identifier was first used to find
the file. Only if this failed was the pathname
used.

Now in order to work more like symbolic links
the pathname is used first. This means that if a
file is renamed and a new file with the old
name is created both an alias and a symbolic
link will find the same file (the new one).

If the pathname does not find the file but the
identifier does then the pathname is updated to
the current correct value.

9 Operating Systems Lecture 17 page

Cycles in the directory graph
If we allow directories to appear in multiple places in

the file system we can get cycles.

We don’t want to fall into infinite loops if we traverse
the file system e.g. to search for a file.

We need some way of uniquely identifying
directories (the name is not enough, different names
point to the same directory).

In UNIX directories can only be linked with
symbolic links and algorithms count symbolic links
on directories to stop infinite recursion.

10

Operating Systems Lecture 17 page

Deletion of linked files

With hard links we maintain a count of the
number of links. This gets decremented
each time one of the links gets deleted.
When this finally reaches zero the actual
file is deleted.

With symbolic links if a link is deleted we do
nothing. If the real file is deleted …

… we could have dangling pointers
… or we could maintain a list of all linked files and go around

and delete all of them.

11 Operating Systems Lecture 17 page

So what is in a directory entry?

The file name – we scan the directory to see if
the file exists within it.

We can have the file attributes stored in the
directory entry.

At a minimum we need a pointer to the file
attributes and location information.

UNIX keeps the file attributes and location
information of each file in a separate
structure – the inode (Information node or
Index node). The inode also keeps a count
of the number of hard links to the file.

The inode table is an array of inodes stored in
one or more places on the disk.

So a UNIX directory isn’t much more than a
table of names and corresponding inode
numbers.

12

Operating Systems Lecture 17 page

NTFS directory entries
All file and folder information is stored in the MFT

(Master File Table).

Each file has at least one file record consisting of the
attributes in Lecture 16, see the picture below.

Folders have an indexed table of file information.

Each folder entry includes the file name, a pointer to the
file's MFT entry, plus the most commonly
referenced file attributes e.g. created and modified
dates, and length.

So much of the information in the files MFT record is
duplicated in the directory entry. Why?

This explains the hardlink behaviour on slide 6.

An MFT entry for a file or directory:

13 Operating Systems Lecture 17 page

Before next time

Read from the textbook
12.4 – Allocation methods
12.5 – Free-space management
12.6.1 - Efficiency

14

