
Operating Systems Lecture 16 page

File Systems

A file system needs to satisfy these general
requirements.

We need some way of storing information
independently from a running program
so it can be used at a later time
permanently (or an approximation to it)
non-volatile storage
so it can be shared with other programs or users

An infinite variety of data is to be stored
The more information the OS knows about the data the more it

can facilitate use of the data.
e.g. Executable files

Naming the data
The data needs to be stored and retrieved easily. We need a

way to name the data.

1 Operating Systems Lecture 16 page

What is a file?

Textbook: A named collection of related
information that is recorded on secondary
storage.

The information is usually related in the sense
that it is used by a particular program (or is
a particular program).

Secondary storage is usually a disk drive but it
could be a tape drive, or any other non-
volatile device (SSD)

In some systems “files” are not always files
e.g. In UNIX devices are “files” and so are
some operating system data structures
(e.g. /proc in Linux)

ls -l /proc

2

Operating Systems Lecture 16 page

File system operations 1
On most systems these commands need security

authorisation to perform and they work on the file as
a whole.

Create

Need to specify information about the file:

• the name

• the file type (or some representation of the program
associated with this file)

• do we need to specify the size of the file? (certainly
helps with keeping storage contiguous but is usually
regarded as an unnecessary restriction)

Creation needs to do something to the associated device
- at least write to some structure (a directory).

Some systems allow transitory files to not be recorded
permanently in secondary storage.

3 Operating Systems Lecture 16 page

File system operations 2

Delete

Remove the file. Return the space used by the
file. Zero the space?

What if the deletion was a mistake?
Deletion might keep the file in a “going away” area from

which it can be retrieved.
Versioning file systems maintain multiple versions over time.

They can also be used to track down intruders (self-
securing storage)

Move

Moving a file can be performed in different
ways depending on the before and after
locations.

If both locations are on the same device the
data doesn’t have to be copied and then the
original deleted. Instead change information
about the file.

4

Operating Systems Lecture 16 page

File system operations 3

Copy

Most file systems preserve attributes
(including last modified times) when a copy
is made. This way a file can be last
modified before it was created.

In some situations we can use copy on write
rather than making complete copies. The
file information needs to point to the
original data.

Change attributes

We will see the different sorts of attributes
shortly. Some of these should be
changeable, others should be secured.

5 Operating Systems Lecture 16 page

File system operations - read

These operations work on the files contents.

We need to know where the information is on
the device.

Must specify what data to read, how much,
and where to put it.

Sequential access
data is retrieved in the same order it is stored
there is a current position pointer somewhere

• may be stored within the using program
• may be stored within the file system (but separately

for each process)
• has ramifications for distributed systems

Direct (or random) access
Easy on a disk device. Even easier on a solid state device.
The read specifies exactly where it wants to get the data from.

• it could be a byte offset
• or a record number

Some file systems let you specify record length when you
create a file. Others leave all such control up to individual
programs.

6

Operating Systems Lecture 16 page

File system operations - write

Very similar to read but commonly requires the
allocation of extra space.

Direct (random) access writes can create holes.

! The program “seeks” to the new position.

! If this is outside the bounds of the file then
we have two choices.

! allocate all of the intervening space and fill it
with some null value

! mark the intervening space in the directory as
not allocated – this is known as a sparse file

If a process tries to read from the empty space
of a sparse file it gets the null value for the
record.

If a process writes to the empty space then real
blocks are allocated and written to.

7 Operating Systems Lecture 16 page

Design decisions

Files need to contain vastly different types of
information.

Some of this information is tightly structured
with lines, records etc.

Should the file system allow flexibility in how
it deals with differently structured files?

At the bottom level the file system is working with discrete
structures (sectors and blocks) of a definite size.

The most common solution is to treat files as a stream of bytes
and any other structure is enforced by the programs using
the files.

The work has to be done somewhere.
Some operating systems provide more facilities than others for

dealing with a variety of file types.

8

Operating Systems Lecture 16 page

File attributes

Information about the files.

These vary widely because of the previous
design decisions.

Standard ones
file name – the full name includes the directories to traverse to

find this file. How much space should the system allocate
for a name? Many systems use a byte to indicate the file
name length and so are limited to 255 characters. There are
usually limitations on the characters you can use in
filenames.

location – where is the file stored, some pointer to the device
(or server) and the positions on the device

size of the file – either in bytes, blocks, number of records etc
owner information – usually the owner can do anything to a

file
other access information – who should be allowed to do what
dates and times – of creation, access, modification

and file types…

9 Operating Systems Lecture 16 page

File type

The more the system knows about file types
the more it can perform appropriate tasks.

e.g.
Executable binaries can be loaded and executed.
Text files can be indexed.
Pictures can have thumbnails generated from them.
Files can automatically be opened by corresponding programs.
Also the system can stop the user doing something stupid like

printing an mp3 file.

All operating systems “know” about
executable binary files.

They have an OS specific structure –
information for the loader about necessary
libraries and where different parts should be
loaded and where the first instruction is.

10

Operating Systems Lecture 16 page

Dealing with file types
Windows deals with

different file types
using a simple
extension on the file
name.

The extensions are
connected to programs
and commands in the
system registry.

But there is nothing to
stop a user changing
an extension (except a
warning message).

UNIX uses magic
numbers on the front
of the file data.

If the file is executed the magic
number can be used to
invoke an interpreter for
example.

Windows does something
similar with extra
information about
files.

11

Try using the file
command on Linux (or
Mac).
And od e.g.
od -a -N 32 README.rtf

Operating Systems Lecture 16 page

The Macintosh used 8 bytes to identify file types (4 for
the creator and 4 for the type).

Not normally visible to the user. Therefore harder to change by
accident.

Also more structure - each file has two components
(one can be empty).

Resource fork (/rsrc)
Program code (originally),
icons, menu items,
window information,
preferences.

Data fork
Holds the (possibly unstructured) data, program code

e.g. the text of a word processing document.

Each program includes in its resource fork a list of all
the types of files it can work with.

In MacOS X if using the Unix File System the resource
fork has merged back into the data fork.

Macintosh solution

12

Operating Systems Lecture 16 page

NTFS files
NTFS takes a very general approach to file attributes.

NTFS views each file (or folder) as a set of file
attributes.

The most important one is usually the data attribute.
New attributes can be added.

File data. NTFS supports
multiple data attributes per
file. Each file typically has
one unnamed data attribute. A
file can also have one or
more named data attributes,
each using a particular
syntax.

Data

Additional names, or hard
links, can be included as
additional file name
attributes.

File Name

Locations of all attribute
records that do not fit in the
MFT record.

Attribute List

Information such as
timestamp and link count.Standard Information

DescriptionAttribute Type

13 Operating Systems Lecture 16 page

More NTFS attributes

Used only in the $Volume system file.
Contains the volume label.Volume Name

Used only in the $Volume system file.
Contains the volume version.

Volume
Information

Used to implement the B-tree structure
for large folders and other large
indexes.

Bitmap

Used to implement the B-tree structure
for large folders and other large
indexes.

Index
Allocation

Used to implement folders and other
indexes.Index Root

Used for mounted drives and archives.Reparse Point

Similar to a data stream, but operations
are logged to the NTFS log file just like
NTFS metadata changes.

Logged Tool
Stream

A volume-unique file identifier. Used
by the distributed link tracking service.
Not all files have object identifiers.

Object ID

DescriptionAttribute
Type

14

Operating Systems Lecture 16 page

Alternate Data Streams (NTFS)

>dir
10/09/2004 03:22 p.m. <DIR> .
 0 File(s) 0 bytes
 2 Dir(s) 14,992,101,376 bytes free

>echo "this is an ADS attached to the 'ads test folder'"
> :ads0.txt

>dir
10/09/2004 03:23 p.m. <DIR> .
 0 File(s) 0 bytes
 2 Dir(s) 14,992,101,376 bytes free

>echo "this is an ADS attached to 'file1.txt'" >
file1.txt:ads1.txt

>dir
10/09/2004 03:25 p.m. <DIR> .
10/09/2004 03:25 p.m. 0 file1.txt
 1 File(s) 0 bytes
 2 Dir(s) 14,992,101,376 bytes free

>echo "this is another ADS attached to 'file1.txt'" >
file1.txt:ads2.txt

>dir
10/09/2004 03:25 p.m. <DIR> .
10/09/2004 03:26 p.m. 0 file1.txt
 1 File(s) 0 bytes
 2 Dir(s) 14,992,101,376 bytes free

>more < :ads0.txt
"this is an ADS attached to the 'ads test folder'"

>more < file1.txt:ads1.txt
"this is an ADS attached to 'file1.txt'"

>more < file1.txt:ads2.txt
"this is another ADS attached to 'file1.txt'"

15 Operating Systems Lecture 16 page

Before next time

Read from the textbook
11.3 Directory and Disk Structure
19.5.1 NTFS Internal Layout

16

