
Operating Systems Lecture 14 page

Unix Pipes

Data gets put into the pipe and taken out the other end
• implies buffering mechanism
• what size pipe?
• what about concurrent use - can writes interleave? etc

In UNIX it starts as a way for a process to talk to itself.

int myPipe[2]; pipe(myPipe);

The system call returns two UNIX file descriptors.
myPipe[0] to read, myPipe[1] to write  

e.g. write(myPipe[1], data, length);

Empty and full pipes

• Reading processes are blocked when pipes are empty

• Writing processes are blocked when pipes are full
(65536 bytes on recent Linuxes)

1 Operating Systems Lecture 14 page

Pipes (cont.)
Broken pipes

• A process waiting to read from a pipe with
no writer gets an EOF (once all existing
data has been read).

• A process writing to a pipe with no reader
gets signalled.

Writes are guaranteed to not be interleaved if
they are smaller than the PIPE_BUF
constant.  
This must be at least 512 bytes and is 4096
on Linux.

Limitation

• Can only be used to communicate between
related processes. (Named pipes or FIFO
files can be used for unrelated processes.)

• The file handles are just low integers which index into
the file table for this process.

• The same numbers only make sense in the same
process (or in one forked from it).

2

Operating Systems Lecture 14 page

Sockets

Interprocess connection in a distributed
environment.

Socket communication domains
• UNIX domain (can be used to implement pipes)

names are filenames
• Internet domain

names are IP addresses, names or numbers
plus port number

• NS domain (Xerox communication protocols)
• ISO OSI protocols
• etc

Internet types
• stream – bidirectional, reliable, sequenced,

unduplicated. No record boundaries. Similar to pipes.
• datagram – bidirectional, but not reliable, sequenced

or unduplicated. Record boundaries are preserved.
(Packet switched networks like Ethernet.)

• raw – access to the underlying protocols which
support sockets (available in routers and other network
equipment)

• also non-internet sockets (other transport protocols)

3 Operating Systems Lecture 14 page

Socket calls

Setting up a socket
socket - make a socket, specify the domain and protocol
bind - associate a name with the socket
listen - now ready to get connections
accept - gets a connection and returns a new socket (used for

the actual communication)

another process (for the other end of the
socket):

socket - make a socket
connect - makes the connection between this socket and the

named one

Then normal read and write operations can be
performed on the socket.

Only one process bound to each port.
select – can be used to read from multiple sockets when data

becomes available.

4

Operating Systems Lecture 14 page

Communicating via shared resources

Shared resources
• Separate processes can alter the resource.
• Need to check the state of the resource to either

receive data or know that some event has occurred.
• Usually need to explicitly coordinate access to the

resource.

What if the information I want isn't there yet?  
When do I try again?

Files
• Easy to use but slow.
• File system may provide synchronization help, e.g.

only one writer at a time.

Memory
• Fast
• Synchronization is usually handled explicitly by the

processes.

5 Operating Systems Lecture 14 page

Shared memory

Different threads in the same process
automatically share memory. How can we
share memory between different
heavyweight processes?
• define sections of shared memory,
• attach the shared memory to the process,
• detach, indicate who can access it etc.

Both processes need to know the name of the
area of shared memory.

Must make sure the memory is attached to
some unused area of the process's address
space.

Usual security checks - can this process attach
to this chunk of memory?

What about if the processes are on separate
machines?

6

Operating Systems Lecture 14 page

Shared memory in Python processes
Because of the Global Interpreter Lock, much

Python multiprocessing is done with separate
processes rather than threads.

7

import multiprocessing, os

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]
 print('{0}: finished'.format(os.getpid()))

num = multiprocessing.Value('d', 0.0) # 'd' means double
arr = multiprocessing.Array('i', range(10)) # 'i' means signed int

print(num.value)
print(arr[:])

p = multiprocessing.Process(target=f, args=(num, arr))
p.start()
p.join()

print(num.value)
print(arr[:])
print('{0}: finished'.format(os.getpid()))

Operating Systems Lecture 14 page

Distributed shared memory - DSM

Shared memory between processes running on
different machines.

• A natural method to share information.

• Processes don't need to be changed to run
on a distributed system.

• Slow.

• May need many messages to transfer the
shared memory or parts of it across the
network.

• Extra complications to coordinate use of the
shared memory.

8

Operating Systems Lecture 14 page

DSM implementation

• Copy the memory to whichever machine
has a process sharing it.

• Mark it read only.

• If the process writes, memory access fault,
kernel determines it is shared memory

• and sends a write request to the originating
machine, this can broadcast the change to
other processors to update their copies.

Optimisations

Maybe only copy some of the shared memory
- copy on read.

Simplified if only one process is allowed to
write - readers/writers problem.

Same benefits from distributed object
technology CORBA and RMI.

9 Operating Systems Lecture 14 page

Distributed concurrency

• Locks, semaphores and monitors require
shared memory.

• Doesn’t matter whether a single processor
or multiprocessor.

• Sometimes we need locks over resources
which are available network wide.

• No shared memory.

• Which means we are going to have to send
messages.

10

Operating Systems Lecture 14 page

Centralized method

The easiest solution to allocating resources
safely is to use one process on one machine
to coordinate access to a resource.

We call this a server or coordinator process.

• Request - Reply - Release

A process wanting the resource or mutual
exclusion requests it with a message to the
coordinator and then blocks until it receives
a reply.

When it receives the reply it has the resource
and must send a release message when it
has finished.

11 Operating Systems Lecture 14 page

Fully distributed method

We want decisions made across the entire
system.

So every request must be broadcast to all other
processes in case the resource is currently
being used.

The process continues with secure access after
it hears back from all other processes in the
system.

If a process is inside the critical section it
defers its reply until it leaves the section.

If a process is not inside the critical section
and does not want to enter it replies
immediately.

If it also wants to enter the critical section it
checks to see which request happened
earlier.

12

Operating Systems Lecture 14 page

What happened first?

We can’t rely on synchronized clocks in a
distributed system.

One clock will run slower than another.

Use logical clocks instead.

Each processor keeps timestamps for its
processes.

The system-wide timestamp is the local timestamp with the
processor identifier concatenated on the end (just like in
the Bakery algorithm).

When a message is sent from one processor to
another it carries a timestamp.

If the received timestamp is later than the
current logical time of the receiving
processor the logical time is bumped up.

13 Operating Systems Lecture 14 page

Token-passing method

The fully distributed approach has some
fundamental problems:

The processes must know all about each other.
Processes are assumed not to fail.

There are solutions to these problems but
token-passing is a cleaner method.

A token gets passed around the system – one token per critical
section.

(A logical, if not a physical, ring of processes.)
A process can’t enter the critical section until it gets and holds

on to the token.
Processes pass the token on when they no longer want to enter

the critical section.

Problems
Tokens can get lost.
Processes can die and rings are broken.

14

Operating Systems Lecture 14 page

Complications

Communication can be unreliable or some processes
may fail.

• Coordinators may use time-outs if the resources
aren’t released.

• They can send queries to see if the current owners
are still active.

If the coordinator fails, the using processes need to have
an election to see which process should replace it.  
(See the Bully algorithm in the 8th edition of the
textbook 18.6.1)

When a process detects the coordinator is not available
it starts an election to see if it should be the
coordinator.  
The process with the highest id gets elected.  
A recovering process with a higher id is a bully and
becomes the coordinator.

The new coordinator needs to recreate a wait queue by
polling all processes to see if they need the resource.

15 Operating Systems Lecture 14 page

Before next time

Read from the textbook
7.2 Deadlock Characterization
7.3 Methods for Handling Deadlock
7.4 Deadlock Prevention
7.5 Deadlock Avoidance

16

