
Operating Systems Lecture 11 page

Readers/Writers problem

There is a number of threads.  
In order to ensure the integrity of the shared
data being both read from and written to we
need to allow:
• only one writer access to the data at a time
• if a writer is active there must be no active readers
• if no writer is active there can be multiple readers

We also need to make sure that no process
misses out entirely.

Three types of solutions:
1. writer preferred - waiting writers go before waiting

readers
2. reader preferred – waiting readers go before waiting

writers
3. neither preferred - try to treat readers and writers fairly

(a simple queue is not good enough we want parallel
readers whenever possible)

Both 1 and 2 can lead to indefinite
postponement.

1 Operating Systems Lecture 11 page

Getting the program correct

Programming using low level constructs like semaphores is
prone to mistakes.  
What is wrong with this semaphore solution to the
producer/consumer problem?

exclusive_access = Semaphore.new(1)
number_deposited = Semaphore.new(0)

shared_buffer = 0

producer = Thread.new do
while true

next_result = whatever
exclusive_access.wait()
shared_buffer = next_result
number_deposited.signal()
exclusive_access.signal()

end
end

consumer = Thread.new do
while true

exclusive_access.wait()
number_deposited.wait()
next_result = shared_buffer
exclusive_access.signal()
puts next_result

end
end

2

Operating Systems Lecture 11 page

Bad programmers

Another popular problem is forgetting to
unlock or signal.  
We want an automatic (more or less) way of
helping programmers lock and unlock.

Java, Ruby and other languages try to avoid or
minimise problems by implementing a form
of monitor.

3 Operating Systems Lecture 11 page

Monitors

Brinch Hansen (1973) Hoare (1974)

You can think of a monitor as an object which only
allows one thread to be executing inside it.  
It has:

• the shared resource - it can only be accessed by the
monitor

• publicly accessible procedures - they do the work

• a queue to get in

• a scheduler - which thread gets access next

• local state - not visible externally except via access
procedures

• initialization code

• condition variables

4

Operating Systems Lecture 11 page

Monitors (cont.)

5 Operating Systems Lecture 11 page

Example monitor

Here is an example in some Pseudo-code language
which includes monitors:

monitor Account

 money = 0.00 # the shared resource

 def deposit(amount)  
 money = money + amount
end

 def withdraw(amount)  
 if (amount < money)  
 money = money - amount  
 return true  
 else  
 return false
end
end

 def balance  
 return money
end

end

6

Operating Systems Lecture 11 page

Condition variables

But sometimes our threads have to wait for some
condition.

A condition variable is a queue which can hold threads.
We have wait and signal operations on condition
variables.

conditionVariable.wait puts the current thread
to sleep on the corresponding queue

conditionVariable.signal wakes up one
thread from the queue (if there are any waiting)

• No internal state is kept of how many signals and
waits there have been.

• Simpler than the similar instructions on semaphores.

A signal with nothing waiting does nothing.

A wait always puts a thread to sleep.

7 Operating Systems Lecture 11 page

e.g. condition variables

monitor SimpleBuffer

 def initialize
 buffer_free = true
 buffer = 0
 empty = new_condition_var
 full = new_condition_var
 end

 def insert(value)
 if !buffer_free

empty.wait
 buffer = value
 buffer_free = false
 full.signal
 end

 def retrieve
 if buffer_free

full.wait
data = buffer
buffer_free = true

 empty.signal
 return data
 end

end

8

Operating Systems Lecture 11 page

But which thread runs?

But doesn't signal mean we have two threads
running in the monitor?

Two choices:

! stop the thread which called signal

! don't start the new one until the current
thread leaves the monitor

Usually we use the second answer but:

• the thread may signal on other condition
variables as well and we have to make
scheduling decisions

• it may also change the conditions again
and the next thread shouldn't really run

9 Operating Systems Lecture 11 page

Java monitors

Java has a single lock variable per object (it also has one
per class).

Each object also has a wait set associated with it
(carefully not called a queue).

Synchronized methods must check this variable before
allowing entry.

Synchronized blocks check the same variable.

10

Operating Systems Lecture 11 page

Java monitors (cont.)

There is a count associated with each lock
variable.

The count goes up every time a thread which
owns the lock on that object calls a
synchronized method or block on that
object.

And it goes down when it leaves the method or
block.

When the count gets to zero the thread exits
the monitor and the lock is released.

 ...  
 synchronized (anObject) {  
 do things to the object;  
 }

11 Operating Systems Lecture 11 page

Java monitors are different

• signal is called notify().

• It doesn't provide condition variables in the
language (but now (1.5 and later) provides
them as classes).

• wait() and notify() have a single set
for the whole object, i.e. one condition
variable.

• The object can have unsynchronized
methods which are not private.

• Also fields which are not private. Not a
good idea.

• after a notify() running threads run till
they leave the synchronized area

• programmers are told to use a while loop
with the conditional wait

12

Operating Systems Lecture 11 page

Before next time

Read from the textbook
5.7.3 The Dining-Philosophers Problem
3.4 Interprocess Communication
3.5 Examples of IPC Systems
4.6.2 Signal Handling

13

