
Operating Systems Lecture 08 page

Scheduling processes/threads

Different systems of scheduling for different purposes

Batch systems
Keep the machine going

Time-sharing systems
Keep the users going

Real-time systems (including multimedia, virtual reality
etc)

Always deal with the important things first

Graph showing frequency of CPU-burst times.

1 Operating Systems Lecture 08 page

Levels of scheduling

Batch systems
Very long-term scheduler

• before work can be submitted
• can this user afford it?
• administrative decisions - students can't enter jobs between

10pm and 6am

Long-term scheduler
may enforce administrative decisions

• which jobs (currently spooled) should be accepted into the
system

• need to know about resource requirements
• How many CPU seconds?
• How many files, tapes, pages of output?
• (need a way of encouraging users to try to be accurate in their

estimation)
• it is common for jobs with small resource requirements to run

sooner - why?
• invoked when jobs leave the system

Medium-term scheduler
• if things get out of balance suspend this process and swap it

out

Short-term scheduler (sometimes called the dispatcher)
• which of the runnable jobs should go next

Dispatcher
The code which performs the context switch from one process to

another.

2

Operating Systems Lecture 08 page

Scheduling algorithms

FCFS - first come first served
no time wasted to determine which process should run next
little overhead as context switch only when required

Example: Process Burst Time

 P1 24

 P2 3

 P3 3

Suppose that the processes arrive in the
order: P1 , P2 , P3  
The Gantt Chart for the schedule is:  
 

Average waiting time: (0 + 24 + 27)/3 = 17

P1 P2 P3

24 27 300

3 Operating Systems Lecture 08 page

Round-robin

Round-robin scheduling
A pre-emptive version of FCFS.

Need to determine the size of the time slice or
time quantum.

What is wrong with treating every process
equally?
• no concept of priorities
• doesn't deal with different types of process - compute

bound vs IO bound

One way to tune this is to change the length of
the time slice.
• What effect does a long time slice have?
• What effect does a short time slice have?

What is the average waiting time here?
time slice = 10, what if the time slice = 5?

P1 P2 P3

0

P1 P1

10 13 16 26

4

Operating Systems Lecture 08 page

If we could choose the process which was
going to use the CPU for the smallest
amount of time we would have an algorithm
which minimised the average wait.

For the example on page 3 the average wait time would be 3.

SJF – shortest-job first
Unfortunately we don’t know which is the process with the

shortest CPU burst.
Use the previous CPU bursts to estimate the next.

We may use a different method of pre-emption
If a process becomes ready with a shorter burst time than the

remaining burst time of the running process then the
process is pre-empted.

This is simply a priority mechanism.

Minimising average wait time

5 Operating Systems Lecture 08 page

Pre-emptive SJF

 Process Arrival Time Burst Time

 P1 0 7

 P2 2 4

 P3 4 1

 P4 5 4

Average waiting time = (9 + 1 + 0 +2)/4 = 3

What is the average waiting time without
preemption?

P1 P3P2

42 110

P4

5 7

P2 P1

16

6

Operating Systems Lecture 08 page

Handling priorities
Explicit priorities
Unchanging
Set before a process runs.
When a new process arrives it is placed in the

position in the ready queue corresponding
to its priority.

It is possible to get starvation.
Variable priorities
Priorities can vary over the life of the process.
The system makes changes according to the

process' behaviour: CPU usage, IO usage,
memory requirements.

If a process is not running because it has a low
priority we can increase the priority over
time - this is one way of aging the priority

Or a process of a worse priority might be scheduled after five
processes of a better priority.

This prevents starvation, but better priority processes will still
run more often.

Can pre-empt processes if a better choice
arrives.

7 Operating Systems Lecture 08 page

Multiple queues

Either a process stays on its original queue

or processes move from queue to queue.

Some are absolute - worse priority queues only
run a process if no better queues have any
waiting.

Some have different selection strategies.
Lower priority queues might occasionally be selected from.

Some allocate different time slices.

Processes can be moved from queue to queue
because of their behaviour.

CPU intensive processes are commonly put on worse priority
queues.

What behaviour does this encourage?

Processes which haven't run for a long time
can be moved to better priority queues.

8

Operating Systems Lecture 08 page

Moving between queues

Multiple processors

We presume all processes can run on all
processors (not always true)

Maintain a shared queue.

Is this preferable?

Let each processor select the next process
from the queue.

Or let one processor determine which process
goes to which processor.

9 Operating Systems Lecture 08 page

UNIX process scheduling

Every process has a scheduling priority
associated with it; larger numbers indicate
worse priority.

Priorities can be changed by the nice system
call.

Ordinary users can only nice their own processes upwards (i.e.
worse priorities).

Processes get worse (higher) priorities by
spending time running.

There is a worst level which all CPU bound processes end up
at.

This means round-robin scheduling for these processes.

Process aging is employed to prevent
starvation.

Priorities are recomputed every second.

10

Operating Systems Lecture 08 page

Old Linux process scheduling

Linux used two process-scheduling
algorithms:

A time-sharing algorithm for most processes.
A real-time algorithm for processes where absolute priorities

are more important than fairness.

A process’s scheduling class defined which
algorithm to apply.

For time-sharing processes, Linux used a
prioritized, credit based algorithm.

The process with the most credits won.
Every clock tick the running process lost a credit.
When it reached 0 another process was chosen.
The crediting rule was run when no runnable process had any

credits left.

This meant that waiting processes got extra credits and would
run quickly when no longer waiting.

11

credits := credits
2

+ priority

Operating Systems Lecture 08 page

Linux real-time scheduling

Linux implements the FIFO and round-robin
real-time scheduling classes (POSIX.1b); in
both cases, each process has a priority in
addition to its scheduling class.

The scheduler runs the process with the highest priority; for
equal-priority processes, it runs the longest-waiting one.

FIFO processes continue to run until they either exit or block.
A round-robin process will be preempted after a while and

moved to the end of the scheduling queue, so that round-
robin processes of equal priority automatically time-share
between themselves.

12

Operating Systems Lecture 08 page

New Linux process scheduling
Linux 2.6 upwards

Goal: make all algorithms O(1) regardless of
the number of processes/threads

Separate ready queues for each processor.
Load balancer invoked periodically.

One queue for each priority level.

Rather than recalculate all priorities at one go,
they are recalculated as time-slices finish.

Time-slices are the length of time before the
priority gets calculated. i.e. If a process
blocks before its time-slice is used up it
stays on the same queue when it unblocks.

Interactive processes get improved priorities
and long time-slices.

Now there is another “completely fair”
scheduler

13 Operating Systems Lecture 08 page

Before next time

Read from the textbook
6.6 Real-Time Scheduling

14

