
Operating Systems Lecture 05 page

PROCESSES

The thing which represents our work to the system.

Sometimes referred to as a heavyweight process.

An instance of a program in execution.

An instance...

May be more than one version of the same program
running at the same time.  
(Hopefully sharing the code.)  
Each instance has resource limitations, security
information - rights, capabilities etc.

 ...of a program ...

So it includes code, data, connections (to files,
networks, other processes), access to devices.

 ... in execution.

It needs the processor to run. But it doesn't run all the
time.  
So it needs information about what it is up to stored
somewhere.

1 Operating Systems Lecture 05 page

Two parts to a process

1. Resources, the things the process owns
(may be shared). Also information about
the process.

2. What the process is doing - the streams of
execution.

Traditional processes had resources and a
single current location. e.g. traditional
UNIX.  
The resource part is called a task or a job.
The location part is commonly called a
thread.

Most operating systems now provide support
to keep these parts separate, e.g. Linux,
Solaris, Windows, Mach (basis of MacOS
X).

2

Operating Systems Lecture 05 page

Threads
Sometimes referred to as lightweight processes.

A sequence of instructions being executed when there is
no external intervention.

Sometimes we want to share data as well as code.
(Could just share files or memory and not use
threads.)

Easier to create than a process.  
They provide a nice encapsulation of a problem
within a process rather than multiple processes.

Easier to switch between threads than between
processes.

3 Operating Systems Lecture 05 page

Typical uses

• splitting work across processors (shared
memory multiprocessor)

• added responsiveness (handle user input
while still finishing another function)

• controlling and monitoring other threads

• server applications

• can help program abstraction

4

Operating Systems Lecture 05 page

Thread implementation

User-level (or green threads)
The OS only sees one thread per process.
The process constructs other threads by user-level library calls

or by hand.
User-level control over starting and stopping threads.
Usually a request is made to the OS to interrupt the process

regularly (an alarm clock) so that the process can schedule
another thread.

The state of threads in the library code does not correspond to
the state of the process.

System-level
The OS knows about multiple threads per process.
Threads are constructed and controlled by system calls.
The system knows the state of each thread.

5 Operating Systems Lecture 05 page

User-level thread advantages

Works even if the OS doesn't support threads.
Some implementations of Java have user-level threads because

the underlying OS doesn’t.

Easier to create - no system call.
Just a normal library procedure call.
No switch into kernel mode (this saves time).

Control can be application specific.
Sometimes the OS doesn’t give the type of control an

application needs.
e.g. precise priority levels, changing scheduling decisions

according to state changes

Easier to switch between - saves two processor
mode changes.

Can be as simple as saving and loading registers (including SP,
PSW and PC).

So why would anyone want to use system-
level threads?

6

Operating Systems Lecture 05 page

System-level thread advantages

Each thread can be treated separately.
Rather than using the timeslice of one process over many

threads.
Should a process with 100 threads get 100 times the CPU time

of a process with 1 thread?

A thread blocking in the kernel doesn't stop all
other threads in the same process.

With the user-level threads if one thread blocks for IO the OS
sees the process as blocked for IO.

On a multiprocessor (including multi-core)
different threads can be scheduled on
different processors.

This can only be done if the OS knows about the threads.
Even then it sometimes doesn’t work - standard Python has

system level threads but the Global Interpreter Lock (GIL)
means that only one runs at a time even on a multicore
machine

7 Operating Systems Lecture 05 page

Jacketing

One major problem with user-level threads is
the blocking of all threads within a process
when one blocks.

A possible solution is known as jacketing.
A blocking system call has a user-level jacket.
The jacket checks to see if the resource is available, e.g.,

device is free.
If not another thread is started.
When the calling thread is scheduled again (by the thread

library) it once again checks the state of the device.

So there has to be some way of determining if
resources are available to accept requests
immediately.

8

Operating Systems Lecture 05 page

The best of both worlds?

Solaris (versions < 9) had both user-level and
system-level threads.

LWP – light-weight process (what we have
been calling system-level threads)

Kernel threads – active within the kernel
Each LWP is associated with one kernel thread.

One or more user threads could be multiplexed
on each LWP.

A process could have several user and several
LWPs.

The number of LWPs per process was adjusted
automatically to keep threads running.

9 Operating Systems Lecture 05 page

Solaris < 9 process thread system

From version 9 onwards, Solaris uses one-to-
one mapping of user-level and kernel-level
threads.

10

Operating Systems Lecture 05 page

Original Linux threads (before 2.6)

Clone - makes a new process (more on that later)  
Shares - memory, open files (actually descriptors),
signal handlers

From one point of view original Linux threads are
processes - but they share all resources and hence the
advantages of threads.

Original Linux threads and POSIX

Can't be set to schedule threads according to priority
within a process - each thread is scheduled
independently across all threads/processes in the
system.

Can't send a signal to the whole process.

Ordinary system calls e.g. read, are not cancellation
points.

Starting a new program in one thread doesn't kill the
other threads in the same process.

When an original Linux thread blocks doing IO do all
other threads in the same process stop?

11 Operating Systems Lecture 05 page

Before the next lecture

If you don’t have a copy of Linux or other
Unix-based OS (such as MacOS X) you
could do this:

Download and install VMWare Player from
www.vmware.com/products/player - you have to give them
your email address but it is completely free (as in beer)

Download and install (in VMWare player) Ubuntu from http://
www.ubuntu.com/desktop.

Read textbook
3.3 Operations on Processes
18.4 Process Management

12

