
Operating Systems Lecture 04 page

Virtual machines

Virtual machine systems can give everyone the
OS (and hardware) that they want.

IBM’s VM provided an exact copy of the
hardware to the user.

Advantages
You can choose your OS.
You can modify or develop new OSs without crashing

machines or having to reboot.
An extra level of safety – each user’s virtual machine is

completely separate from all the others.
Virtual servers (next slide)

Disadvantages
Some resources allocated to one VM can’t be shared by

another. (Virtual networks)
Tricky to implement. An extra layer of complexity. Each layer

can provide its own bugs.

1 Operating Systems Lecture 04 page

Virtual machines are very widespread.

Many web and database servers assume that they are
the only thing running on a machine. They are
designed that way (is this a good idea?).

Using virtual servers means that multiple servers can
be running simultaneously on the one machine.

Errors, or security problems with one server do not
affect the other servers on the same machine. (In
theory.)

As long as the expected loads are not going to
overwhelm the machine, this is definitely a cost
effective solution. Less hardware to buy and you
use what you have more efficiently.

Added flexibility - VMs can be migrated from one
machine to another without having to reboot.

Copy - it is trivial to create a new VM as a copy of
an existing one.

Virtual Servers

2

Operating Systems Lecture 04 page

Popek and Goldberg (1974)

• Fidelity – software should run identically
(except for speed) on the Virtual Machine as
on the real machine.

• Performance – most instructions in a VM
must run directly on the hardware (therefore
at the same speed as on the real machine).
Not the same as emulation.

• Safety (also known as resource control)– the
Virtual Machine Monitor/Manager (VMM) is
in complete control of system resources and
must be safe from any actions of the VM.
Also one VM must be safe from the actions
of another VM.

Host OS – the operating system which the
VMM is running on.

Guest OS – the operating system running inside
a VM.

Virtualization

3 Operating Systems Lecture 04 page

Design of IBM’s VM

CPU scheduling can create the appearance that users have their own
processor.

Spooling and a file system can provide virtual line printers and
virtual disks (minidisks).

A normal user time-sharing terminal serves as the virtual machine
operator’s console.

Virtual user and kernel modes are provided.

VM did very little emulation. System calls caused traps to the VM
and calls back to the correct kernel.

Only privileged instructions needed to be emulated.

4

Operating Systems Lecture 04 page

Hypervisor Types

The textbook has 3 types of hypervisor (or
VMMs), Popek and Goldberg had 2.

Type 0 (not universally accepted as a type) -
implemented in hardware and firmware, it
loads at boot time. The guest OSs load into
partitions separated by the hardware. They
are allocated dedicated resources e.g.
processors, memory, devices. Guests OSs are
native with a subset of the hardware.

5 Operating Systems Lecture 04 page

Type 1 & Type 2

Type 1

 Special purpose OSs - they load at boot time and
provide the optimised environment to run guest OSs.
Now supported by hardware on Intel and AMD
processors (see later).

 Run in kernel mode.

 They implement device drivers and the guests access
the devices through them.

 They also provide services to manage the guests -
backup, monitoring. So these are the VMs used in data
centres or the cloud.

 e.g. VMWare’s ESX, XenServer

Some “standard” OSs can also be made to run as Type 1 -
e.g. Enterprise Linux, Windows Hyper-V

Type 2

 These run as applications on the host OS. e.g.
VMWare Workstation (or Player) and VirtualBox.

6

Operating Systems Lecture 04 page

• Until 2006, all x86 type CPUs had problems
with classical – trap and emulate
virtualization.

http://en.wikipedia.org/wiki/X86_virtualization

• Some instructions ran in both user and kernel
modes (they just worked differently in kernel
mode). So they were not privileged
instructions and executing them did not cause
a trap into the VMM.

• Some instructions allowed the program to
determine if it was running in privileged
mode. The kernel of a guest OS should be
privileged however if it checked it would see
it was in user mode, breaking the fidelity
requirement.

• Even worse there were problems with
protecting the page table information and
keeping it all consistent.

x86 Virtualization problems

7 Operating Systems Lecture 04 page

• User level code is fine – it will actually run in
user mode and can't do anything privileged. If
it tries to it will cause an exception which
will be caught by the VMM and passed back
to the guest OS kernel.

• So the problem only occurs when in the
kernel of the guest OS.

• Binary translation -
• Code running in kernel mode is translated at run-time

into something which doesn't have these problems.

Isn't that terribly slow?
• The translation is very simple (and hence efficient).
• Only translates code which is actually run.
• Much of the code is exactly the same as the original.
• The translated code is cached and reused.
• Uses all sorts of tricks to speed up emulation.

• Performs very well compared to true
hardware virtualization – which struggles
with page-table modifications.

Solutions

8

Operating Systems Lecture 04 page

Hardware Virtualization (x86)

Both Intel and AMD have developed their own
solutions to deal with virtualization.

Intel VT and AMD-V – an extra high privilege
area for the VMM. OS still runs in ring 0
(kernel mode).

Hardware transitions from ring 0 to the VMM.

Processor state is maintained for each guest OS
(and the VMM) in separate address spaces.

AMD-V – included tagged translation lookaside
buffers (so virtual memory didn't have a hit
when changing virtual machines)

Both AMD and Intel processors now do Second
Level Address Translation (SLAT)
determine the guest physical address from the guest virtual

address using hardware
then turn the guest physical address into the host physical

address also using hardware

9 Operating Systems Lecture 04 page

OS level virtualization
If virtualizing servers we can often use the same

OS. This means we virtualize less.

Containers look like servers – they can be
rebooted separately, have their own IP
addresses, root, programs etc.

But they all use the same underlying kernel.

And they are still separate from each other.

e.g. Parallels Virtuozzo and OpenVZ - see http://
en.wikipedia.org/wiki/OpenVZ

processes

Container

processes

Container

processes

Container

Kernel

10

Operating Systems Lecture 04 page

More VM styles

Paravirtualization - Xen – software approach.
Requires modifications to the OS source
code to use the Xen layer. e.g. To read from
a file the guest directly calls host read
routines.

Application virtualization - an application runs
on a layer which provides the resources it
needs even though it may be running on a
different OS e.g. Wine or running programs
from old versions of Windows on a newer
one.

Programming-Environment Virtualization,
Java VM & CLR/Mono

Implement a different architecture on top of any hardware/OS.
Programs are compiled to the Java VM or CLR architecture

then run by either compiling or interpreting that code.
Earlier versions – late 70’s UCSD Pascal system.

11 Operating Systems Lecture 04 page

C and OS implementations

Why has C been the language of choice for most
operating system implementations?

That is what it was designed for:
Ken Thompson and Dennis Ritchie converted UNIX from

assembly language to C to provide portability.

Close to the hardware.
Low-level access to memory
Maps easily to machine instructions
Easy to inline assembly language code (depends on the

compiler)

Has small requirements for runtime support

Sometimes referred to as a high-level assembler.

12

Operating Systems Lecture 04 page

Direct access to memory

C pointers can have integers assigned to them
This means that actual addresses can be stored in a pointer

and then used to access that address
Memory mapped devices can then be controlled directly

from normal C.
e.g.
#include <stdio.h>
#include <stdlib.h>

#define ADDRESS 0x7fff52cb08a0

int main(void) {
long number = 1234;
long *pointer = &number;

printf("number is %ld\n", number);
printf("The value at %p is %ld.\n", pointer, *pointer);
*pointer = 42;
printf("number is %ld\n", number);

// And I can do the same thing with any address
 // it could cause a segmentation error

// since MacOS now uses ASLR
pointer = (long *)ADDRESS;
printf("The value at %p is %ld.\n", (void *)ADDRESS, *pointer);
return EXIT_SUCCESS;

}

Pointer arithmetic gave fast access to elements
in arrays or structs

13 Operating Systems Lecture 04 page

Accessing registers

You can use the “register” storage class specifier
to say that a variable should be kept in a
processor register. e.g.

register long number = 1234;

However this does not guarantee that a value is
stored in a register, it depends on the number
of available registers.

Also compilers do a really good job of
optimising register usage and it is not usually
a good idea for a programmer to worry about
this level of optimisation.

Memory mapped registers can be accessed
directly using pointer manipulation as on the
previous slide.

14

Operating Systems Lecture 04 page

Volatile

Volatile is a storage class qualifier
e.g.

volatile unsigned char *reg;

This means the variable may change in a non-local way, in
other words there is no way the compiler could possibly
know whether the value has changed or not between
references.

So the compiler is not allowed to optimise accesses. Every
single read must go back to the main store to retrieve the
current value.

• memory mapped device registers
• values modified in interrupt routines
• values modified in another thread

unsigned char *reg = (unsigned char *)0x1000;

while (*reg) {}

This looks like it will always repeat or never repeat
depending on the initial value stored in 0x1000.

15 Operating Systems Lecture 04 page

Memory management

All local variables disappear when functions are
returned from.
Space is allocated on the stack for the variables in each

function invocation.
There is a limit to the size of the stack (especially for

threads as each thread needs its own stack)

Areas of static memory
Global variables
Static variables - can be static in a file or in a function.
static int x;

If in a function it maintains its value even when the
function is returned from.

The advantage of static memory is that it is allocated at
compile time and hence has no allocation overhead at
run time.

The disadvantage is that it cannot easily be released.

16

Operating Systems Lecture 04 page

Dynamic Memory

C requires explicit control of dynamic memory.
This is suitable for OS programming as there is no garbage

collection available.
• garbage collection adds a layer of complexity and

unpredictability to the programming environment
• this is important in small systems - such as

embedded systems (or phones?)
• especially important in real-time systems

To allocate memory we use malloc (or calloc or
valloc etc.).
struct thread *thread;
if ((thread = malloc(sizeof(struct thread))) == NULL) {

perror("allocating thread");
exit(EXIT_FAILURE);

}

To deallocate memory we use free.
free(thread);

How does free know how much memory to
release?

17 Operating Systems Lecture 04 page

Inline assembly

This is both compiler and system dependent.

// store current stack pointer
int savedSP;
asm("movl %%esp, %0\n" :"=r"(savedSP));
// change to the top of newThread's stack
char *tos = stack + SIGSTKSZ - 16;
asm("movl %0, %%esp\n" : : "r"(tos));
associateStack();
// restore stack pointer
asm("movl %0, %%esp\n" : : "r"(savedSP));

18

Operating Systems Lecture 04 page

Example Windows Code

From the Windows Research Kernel (basically
Windows Server 2003, also the same as XP)

 //
 // Create the process ID
 //

 CidEntry.Object = Process;
 CidEntry.GrantedAccess = 0;
 Process->UniqueProcessId = ExCreateHandle (PspCidTable, &CidEntry);
 if (Process->UniqueProcessId == NULL) {
 Status = STATUS_INSUFFICIENT_RESOURCES;
 goto exit_and_deref;
 }

 ExSetHandleTableOwner (Process->ObjectTable,
Process->UniqueProcessId);

19 Operating Systems Lecture 04 page

Example Linux Code

/*
 * When we die, we re-parent all our children.
 * Try to give them to another thread in our thread
 * group, and if no such member exists, give it to
 * the child reaper process (ie "init") in our pid
 * space.
 */
static struct task_struct *find_new_reaper(struct task_struct
*father)
{
 struct pid_namespace *pid_ns = task_active_pid_ns(father);
 struct task_struct *thread;

 thread = father;
 while_each_thread(father, thread) {
 if (thread->flags & PF_EXITING)
 continue;
 if (unlikely(pid_ns->child_reaper == father))
 pid_ns->child_reaper = thread;
 return thread;
 }

 if (unlikely(pid_ns->child_reaper == father)) {
 write_unlock_irq(&tasklist_lock);
 if (unlikely(pid_ns == &init_pid_ns))
 panic("Attempted to kill init!");

 zap_pid_ns_processes(pid_ns);
 write_lock_irq(&tasklist_lock);
 /*
 * We can not clear ->child_reaper or leave it alone.
 * There may by stealth EXIT_DEAD tasks on ->children,
 * forget_original_parent() must move them somewhere.
 */
 pid_ns->child_reaper = init_pid_ns.child_reaper;
 }

 return pid_ns->child_reaper;
}

20

Operating Systems Lecture 04 page

Running commands from a C program

Because of the large number of standard useful
commands in Unix it is helpful to be able to
use them from inside C programs.

Type man system

e.g.
system(“ps -x”);

This creates a shell and gets it to execute the
command.

If you need to use the output (or provide input)
in your program you need to use the popen C
function.

21 Operating Systems Lecture 04 page

Alternatives

C++ - Some operating systems are written in
C++. Sometimes with a small section in C.

Objective C - MacOS is written in C with
Objective-C on top

Java - Some operating systems are written
largely (but not exclusively) in Java

Assembly - the original operating system
implementation language

22

Operating Systems Lecture 04 page

Python

But we are using Python.

Why?
It is easier to learn
It has very convenient access to Unix OS calls
It is fun

Accessing Unix system calls
import os

reader, writer = os.pipe()

child_pid = os.fork()

import sys

sys.stdout.write(‘hi\n’)

file = open(‘output’, ‘w’)

sys.stdout = file

print(‘Where did this go?’)

23 Operating Systems Lecture 04 page

Before the next lecture

Read textbook sections

3.1 Process Concept
Threads
4.1 Overview
4.2 Multicore Programming
4.3 Multithreading Models
4.4 Thread Libraries
4.7 Operating-System Examples

24

