
COMPSCI 340SC & SOFTENG 370SC 2009
Operating Systems Test

Wednesday 26th August, 9:05am – 9:55am

• Answer all questions in the spaces provided.
• The test is out of 60 marks. Please allocate your time accordingly.
• Make sure your name is on every piece of paper that you hand in.
• When you are asked to explain something or to give reasons for something you can give

your answers as a series of points. Be brief.
• The last page of the booklet may be removed and used for working.

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 1

For markers only:

Question 1 /5

Question 2 /6

Question 3 /6

Question 4 /10

Question 5 /14

Question 6 /6

Question 7 /13 Total

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 2

Question 1 – History and Development of Operating Systems (5 marks)

a) The earliest identifiable operating systems were resident monitors. Describe one aspect of
current desktop operating systems (e.g. Linux or Windows) which was present in resident
monitor systems.

Any one of: job control language, device drivers, separation of OS from user program etc.

2 marks

b) Describe one aspect of current desktop operating systems which was not present in resident
monitor systems and explain why it wasn’t present.

One of protected memory, virtual memory, concurrency control, etc.

Protected memory or virtual memory were not present because to do them efficiently it must be in

the hardware.

Concurrency control wasn’t necessary because only one program was running at a time.

etc.

3 marks

Question 2 - Structure and Design (6 marks)
a) Windows and Linux have monolithic kernels. What is a monolithic kernel?

A kernel which has most of the different components compiled together. This means it is possible

for one part of the kernel to talk to another part directly by modifying kernel data structures.

No message passing is required.

3 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 3

b) In a virtual machine environment what are virtual user and virtual kernel modes?

In a virtual machine the user mode of a process is called virtual user mode because it is running

in a guest virtual machine on the real host machine. The virtual kernel mode is actually running

at user mode level on the host but must be made to run as though it were running at kernel mode.

In reality both virtual user and virtual kernel modes are real user mode on the host.

3 marks

Question 3 – Processes (6 marks)
a) When a Unix program calls fork() what values get returned?

0 in the child (new) process. The process id of the child in the parent (original) process

2 marks

This C program runs on Unix.

int main(int argc, char** argv) {
 int i;
 for (i = 0; i < 2; i++) {
 fork();
 printf("One\n");
 }
 printf("Two\n");
}

b) How many times would this program print “One” to the display?

6
2 marks

c) How many times would this program print “Two” to the display?

4
2 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 4

Question 4 – Scheduling (10 marks)

a) Here are the arrival and burst times for a number of processes:
Process Arrival time Burst time

A 0 7
B 2 4
C 3 1
D 7 4
E 8 2

 From this table draw a Gantt chart showing a Shortest Job First schedule and calculate the
average waiting time. If the times are the same do NOT pre-empt the running process.

A A B C B B B D E E D D D A A A A A

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7

Average waiting time = (11 + 1 + 0 + 2 + 0) / 5 = 2.8

5 marks

b) Given the following real-time processes calculate a cyclic schedule using Earliest Deadline
First. If the deadlines are the same, do NOT unnecessarily pre-empt the running process. If
the deadlines are the same for a number of non-running processes, choose the alphabetically
lowest. e.g. If at time 9 both Process B and Process D have the same earliest deadline and
neither process was running at time 8 then choose B. Show the schedule as a Gantt chart. The
three numbers are Compute time, Period, and Deadline.

 Process A (3, 8, 8) Process B (2, 6, 6) Process C(3, 12, 12) Process D(1, 24, 24)

B B A A A C C C B B A A A B B C C C A A A B B D

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3

5 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 5

Question 5 – Concurrency (14 marks)

a) What is a spin lock?

A lock which repeatedly checks the lock variable until it becomes free.

2 marks

b) Why do we prefer not to use spin locks if possible?

They unnecessarily use processor cycles. If a resource is currently not free we should sleep until

it is available.

2 marks

c) Why do most operating systems include spin locks? Describe a possible case for when a spin
lock is necessary?

Many kernel data structures are only held for very short periods of time and spin locks,

especially on multiprocessors are the most efficient way of controlling access to these.

On most multiprocessor hardware they are necessary to implement normal waiting locks.

4 marks

 CONTINUED

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 6

You are given an atomic function called Exchange which works like this:

exchange(variableOne, variableTwo)

This atomically swaps the values of variableOne with variableTwo. So that afer calling the
function variableOne holds the value that was in variableTwo and variableTwo holds the
value that was in variableOne.

d) Complete the following pseudocode spin lock using the exchange atomic operation.
boolean lockVariable // this is the lock variable

 // if it is true it means the lock is busy

spinlock(lockVariable): // write your spinlock here

 myLockVariable = true;

 while myLockVariable

 Exchange(lockVariable, myLockVariable)

 end

4 marks

e) Also write the equivalent unlock.

lockVariable = false;

Also acceptable

 mylockVariable = false;

 Exchange(lockVariable, myLockVariable)
2 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 7

Question 6 - Dining Philosophers (6 marks)

Here is some code from an attempted C solution to the Dining Philosophers’ problem.

typedef struct philos {
 char *status;
 pthread_mutex_t *right, *left;
} Philosopher;

// This code is run in a separate thread for each philosopher.
void *philosopherRun(void *phil) {
 Philosopher *philosopher = phil;
 while (true) {
 philosopher->status = "thinking";
 philosopher->status = "waiting";
 bool both = false;
 do {
 if (pthread_mutex_lock(philosopher->left) != 0)
 fprintf(stderr, "Left lock error.\n");
 int right_lock_result = pthread_mutex_trylock(philosopher->right);
 switch (right_lock_result) {
 case 0:
 both = true;
 break;
 case EBUSY:
 pthread_mutex_unlock(philosopher->left); // try again
 both = false;
 break;
 default:
 fprintf(stderr, "Right lock error\n.");
 }
 } while (!both);
 printf("."); // this won't appear if blocked
 philosopher->status = "eating";
 sleep(1);
 pthread_mutex_unlock(philosopher->left);
 pthread_mutex_unlock(philosopher->right);
 }
}

a) What does the constant EBUSY represent?

The fact that the lock is currently being used. i.e. it is locked.
1 mark

b) If the right fork of a philosopher is being used when this code runs describe what happens.

The philospher tries to lock the right fork and finds it is already locked so the philosopher

releases the left fork and goes back to try again.

3 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 8

c) Theoretically this solution is not a perfect solution to the Dining Philosophers’ problem.
Explain why not.

It is possible that everytime a philosopher tries to collect the right fork it is being used again.

In that case it might consistently be released and then acquired while the philosopher is

waiting for the right fork.
2 marks

Question 7 – Assignment 1 (13 marks)
a) In the Windows Research Kernel (WRK) what is a KPROCESS structure, and what does the K

in KPROCESS stand for?

It holds information about a process, similar to a PCB. The K stands for kernel.

2 marks

b) In assignment 1 you had to follow the state transitions of one thread. What process was that
thread created by? i.e. The name of the process the followed thread was part of.

explorer.exe
1 mark

c) Briefly explain how you could find the process identified in part b) as the WRK was running.

Each process has a file name associated with it. This is the ImageFileName field. Each new

process was checked until the one with the ImageFileName “explorer.exe” was created.

This was the explorer process.

3 marks

d) Briefly explain how you could find a thread associated with the process identified in part b) as
the WRK was running. This thread was referred to as ChosenPKThread in the assignment.

When a thread was given the Initialized state we compared the creating process against the

ExplorerProcess. If ChosenPKThread was still null and the creating process was the

ExplorerProcess we had the required thread.

2 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 9

e) Given the following Windows NT thread states draw the state transition diagram as in the
assignment: Initialized, DeferredReady, Ready, Standby, Running, Waiting, Terminated.

5 marks

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 10

Overflow space for answers.

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 11

Overflow space for answers.

Name:
Login (UPI):

CompSci340 & SoftEng370 Test 2009 page 12

This page may be used for working.

CompSci340 & SoftEng370 Test 2007 page 13

