
Define the difference between black box and white box testing:

What is the ‘gold standard’ for black box and white box testing?

Q1 : Creating a java test class that is called TestJunit.java. Adding expected exception to testPrintMessage() test

case.

Q2-1: The ExpectedException rule allows you to specify, within your test, what exception you are expecting and

even what the exception message is. Try to add the expectedexception to test a test case, if you give a negative

age in new Person();

@Rule
 public ExpectedException exception = ExpectedException.none();

 @Test
 public void testExpectedException() {
 exception.expect(IllegalArgumentException.class);
 exception.expectMessage(("Invalid age"));
 new Person("Joe", -1);
 }

@Test(expected = ArithmeticException.class)

 public void testPrintMessage() {

 System.out.println("Inside testPrintMessage()");

 messageUtil.printMessage();

 }

Black box: Data driven. The focus is on finding cases where the program does not behave according to

the design specifications. No knowledge of the internal program behaviour.

White box: Test via examination of the program’s logic.

Black box – Exhaustive input testing.

White box – Exhaustive Path Testing.

Q2-2: Specify the exception in the @Test annotation

Q2-3: Use a try-catch block

Q3: The performance verification is one of the most difficult issues in JUnit. JUnit 4 not completely

solves the problem but offers an utile help: in fact, the test method can be signed with a timeout

parameter. If the tests are running in a time over, it fails. Try to use set the timeout value = 500 and

test run() function in Performace.java.

@Test(expected = IllegalArgumentException.class)

public void testExpectedException2() {

 new Person("Joe", -1);

}

@Test

public void testExpectedException3() {

 try {

 new Person("Joe", -1);

 fail("Should have thrown an IllegalArgumentException because age is invalid!");

 } catch (IllegalArgumentException e) {

assertEquals(e.getMessage(), ("Invalid age:-1"));

}

}

@Test(timeout=500)

