
Compsci230

Tutorials

Introduction of Testing
 Testing is the process of finding differences between the

expected behavior specified by system models and the
observed behavior of the implemented system. Unit
testing finds differences between a specification of an
object and its realization as a component

 Three testing methods:
 Structural testing finds differences between the system

design model and a subset of integrated subsystems.
 Functional testing finds differences between the use case

model and the system.
 performance testing finds differences between

nonfunctional requirements and actual system
performance.

An Overview of Testing
 Reliability is a measure of success with which the observed

behavior of a system conforms to the specification of its
behavior

 Software reliability is the probability that a software system
will not cause system failure for a specified time under
specified conditions

 Failure is any deviation of the observed behavior from the
specified behavior

 erroneous state (also called an error) means the system is in
a state such that further processing by the system will lead to
a failure, which then causes the system to deviate from its
intended behavior

 A fault, also called “defect” or “bug,” is the mechanical or
algorithmic cause of an erroneous state

An overview of testing activities
 Test planning allocates resources and schedules the testing. This activity should occur early

in the development phase so that sufficient time and skill is dedicated to testing. For example,
developers can design test cases as soon as the models they validate

 Usability testing tries to find faults in the user interface design of the system. Often,
systems fail to accomplish their intended purpose simply because their users are confused by
the user interface and unwillingly introduce erroneous data.

 Unit testing tries to find faults in participating objects and/or subsystems with respect to
the use cases from the use case model

 Integration testing is the activity of finding faults by testing individual components in
combination. Structural testing is the culmination of integration testing involving all
components of the system. Integration tests and structural tests exploit knowledge from the
SDD (System Design Document) using an integration strategy described in the Test Plan (TP).

 System testing tests all the components together, seen as a single system to identify faults
with respect to the scenarios from the problem statement and the requirements and design
goals identified in the analysis and system design, respectively:
 Functional testing tests the requirements from the RAD and the user manual.
 Performance testing checks the nonfunctional requirements and additional design goals

from the SDD(System Design Document). Functional and performance testing are done by
developers.

 Acceptance testing and installation testing check the system against the project agreement and is
done by the client, if necessary, with help by the developers.

JUnit Introduction
 JUnit is a framework for writing and automating the

execution of unit tests for Java classes.

JUnit Introduction
 ConcreteTestCase Class: the setUp() and tearDown()

methods of the concrete test case initialize and clean up
the testing environment. runTest() method includes the
actual test code that exercises the class under test and
compares the results with an expected condition.

 TestResult: report the testing results, either success or
failure.

How to start JUnit
 Using Eclipse create a new project (for example:

Calcuator)

 Right Click the project name and go to the properties

 Go to the build path -> Add library -> Junit-> JUnit4

 Calculator-> New->Junit Test Case

Example of Calculator
 import static org.junit.Assert.*;

 import org.junit.Before;
 import org.junit.Test;
 import org.junit.Before;
 import org.junit.Ignore;
 import org.junit.Test;

 public class CalculatorTest {
 private static Calculator calculator = new Calculator();
 @Before
 public void setUp() throws Exception {
 calculator.clear();
 }

 @Test
 public void testAdd() {
 calculator.add(2);
 calculator.add(3);
 assertEquals(5, calculator.getResult());
 }
 }

	Compsci230
	Introduction of Testing
	An Overview of Testing	
	An overview of testing activities
	JUnit Introduction
	JUnit Introduction
	How to start JUnit
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Example of Calculator

