

COMPSCI 230 Threading Week11

“In computer science, a thread of execution is the smallest sequence of programmed instructions

that can be managed independently by an operating system scheduler. The scheduler itself is a light-

weight process. The implementation of threads and processes differs from one operating system to

another, but in most cases, a thread is contained inside a process. Multiple threads can exist within

the same process and share resources such as memory, while different processes do not share these

resources”.

Figure 1 shows using multi-core processors to run multiple threads

Figure 2 shows using a single processor to run multiple threads

Thread 1

Thread 2

Thread 3

Thread 1

Thread 2

Thread 3

Modify the testthread.java to create three threads, thread 1 will print the character ‘a’ 100 times,
thread 2 will print the character ‘b’ 100 times and thread 3 will print the number from 1 to 100.
Q1: Please add the codes to create three threads and start threads

Q2: Please complete the blank part for the following line

class PrintNum extends

class PrintChar extends

public class TestThread

{

 /**Main method*/

 public static void main(String[] args)

 {

// Create threads

 PrintChar printA = new PrintChar('a', 100);

 PrintChar printB = new PrintChar('b', 100);

 PrintNum print100 = new PrintNum(100);

 // Start threads

 print100.start();

 printA.start();

printB.start();

 }

}

Thread

Thread

Q3: Please override the run() method in both PrintChar and PrintNum classes

 class PrintChar extends Thread

{

 private char charToPrint; // The character to print

 private int times; // The times to repeat

 /**Construct a thread with specified character and number of

 times to print the character

 */

 public PrintChar(char c, int t)

 {

 charToPrint = c;

 times = t;

 }

 /**Override the run() method to tell the system

 what the thread will do

 */

 public void run()

 {

 for (int i=0; i<times; i++)

 System.out.print(charToPrint);

 }

}

class PrintNum extends Thread

{

 private int lastNum;

 /**Construct a thread for print 1, 2, ... i*/

 public PrintNum(int n)

 {

 lastNum = n;

 }

 /**Tell the thread how to run*/

 public void run()

 {

 for (int i=1; i <= lastNum; i++)

 System.out.print(" " + i);

 }

}

Q2: In TestRunnable.java, use the Runnable interface to create three threads, thread 1 will print the
character ‘a’ 100 times, thread 2 will print the character ‘b’ 100 times and thread 3 will print the
number from 1 to 100.

public class TestRunnable {

 // main method

 public static void main(String args[]) {

 // Create threads

 Thread printA = new Thread (new PrintChar('a',

100));

 Thread printB = new Thread (new PrintChar('b',

100));

 Thread print100 = new Thread (new PrintNum(100));

 printA.start();

 printB.start();

 print100.start();

 } // main

} // TestRunnable

class PrintChar implements Runnable {

 private char charToPrint; // the character to print

 private int times; // The times to repeat

 // Construct a thread with specified character and number

 // of times to print the character

 public PrintChar(char c, int t) {

 charToPrint = c;

 times = t;

 } // printChar

 // Override the run() method to tell the system

 // what the thread will do

 public void run() {

 for (int i=0; i<=times; i++) {

 System.out.print(" " + charToPrint);

 }

 } // run

} // PrintChar

class PrintNum implements Runnable {

 private int lastNum; // the last number to print

 // Construct a thread with the last number

 public PrintNum(int n) {

 lastNum = n;

 } // printChar

 // Override the run() method to tell the system

 // what the thread will do

 public void run() {

 for (int i=0; i<=lastNum; i++) {

 System.out.print(" " + i);

 }

 } // run

}// PrintNum

Q3: In TestRunnableSleep.java, modify the PrintNum class to allow the thread to sleep 1s, if the
next print number is bigger than 50.

Q4: When executing the programs from Q1,Q2, and Q3, the results are unpredictable. Why does

this occur?

Q5: What is a major benefit from using Runnable instead of Thread?

Q6: What are the two types of threads and what is the difference?

public void run()

 {

 for (int i=1; i <= lastNum; i++){

 System.out.print(" " + i);

 Try {

 If (i>50) thread.sleep(1000);

 }

 Catch (InterruptedException ex)

 {

 }

 }

}

It occurs because we cannot ensure the order of thread execution.

Thread is a class which means that, if you use it as a superclass, you

cannot extend from another class due to Java’s restriction on

extending from more than 1 class.

Implementing Runnable means you are still able to subclass.

Daemon and non-daemon threads.

Daemon: They are service or background threads.

Non-daemon: threads that are major part of the program execution. The main thread is one,

as is the event dispatch thread in GUI apps. When all non-daemon threads terminate, then

the program finishes.

Q7: Why shouldn’t you execute time-consuming tasks in the Event-dispatch thread?

In MyForm.java in package Q4 we have a program that uses SwingWorker to complete background

tasks. We’re going to add our own background task that selects random letters from the alphabet

and creates a string of length 10.

Q8: Create a new class called SwingAlphabet that extends SwingWorker. It should have a private

instance variable of type String that is the just the alphabet. You must override the doInBackground

method, the done method, and the process method. It should return a String at the end and print a

Character as it’s selected from the sequence.

Q9: Implement code in doInBackground() that: selects a random characters from variable alpha,

publishes it so we can display it in the GUI, concatenates it to the end of a String, and finally sleeps

for 1 second. Repeat this procedure 10 times then return the new random string.

Because trying up the GUI thread with complex tasks will cause the GUI

itself to become unresponsive.

class SwingAlphabet extends SwingWorker<String, Character>{

 Private String alpha = “abcdefghijklmnopqrstuvwxyz”;

@override

 protected String doInBackground(){

 }

 @Override

 protected void process(List<Character> chunks){

 }

 @Override

 protected void done(){

 }

}

@Override
 protected String doInBackground() {
 System.err.format("... doInBackground isDaemon=%b%n",
Thread.currentThread().isDaemon());
 String fakeString = "";
 Random r = new Random();
 for(int i = 0; i < 10; i++){
 char t = alpha.charAt(r.nextInt(24));
 super.publish(new Character(t));
 fakeString += t;
 try {
 Thread.sleep(500);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 return fakeString;
 }

Q10: Implement code in done() that appends the completed string to the TraceBox.

Q11: Implement code in process() that appends the currently selected letter to Tracebox.

Q12: Finally, add a button to start a new SwingALphabet and change the size of the JFrame to

800,520.

@Override
 protected void done() {
 try {
 TraceBox.append("... done:
str="+super.get()+"\r\n");
 } catch (InterruptedException | ExecutionException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 AlphaButton.setEnabled(true);
 }

@Override
 protected void process(List<Character> chunks) {
 TraceBox.append("... process: ");
 for (Character i : chunks) {
 TraceBox.append(i+" ");
 }
 TraceBox.append("\r\n");
 }

AlphaButton = new JButton("Start SwingAlpha");
 AlphaButton.setFont(font);
 AlphaButton.setPreferredSize(new Dimension(230,30));
 AlphaButton.addActionListener(new ActionListener() {

 @Override
 public void actionPerformed(ActionEvent arg0) {
 AlphaButton_Click();

 }
 });

……

this.setSize(800,520);

……..

public void AlphaButton_Click(){
 SwingAlphabet m = new SwingAlphabet();
 m.execute();
 AlphaButton.setEnabled(false);
 }

Q13: Look at the AccountWithoutSync.java in package Q5, the customer wants to create 100 threads,

and using each thread to add one penny. After 100 threads, the balance should equal to 100.

package Q1;

public class AccountWithoutSync {

 private Account account = new Account();
 private Thread[] thread = new Thread[100];

 public static void main(String[] args) {
 AccountWithoutSync test = new AccountWithoutSync();
 System.out.println("What is balance ? " + test.account.getBalance());
 }

 public AccountWithoutSync(){
 ThreadGroup g = new ThreadGroup("group");
 boolean done = false;
 for(int i =0 ; i< 100; i++)
 {
 thread[i] = new Thread(g,new AddAPennyThread(), "t");
 thread[i].start();
 }

 while (!done)
 if(g.activeCount() == 0)
 done = true;
 }
 // An inner class of task for adding a penny to the account
 class AddAPennyThread extends Thread {

 public void run() {
 account.deposit(1);
 }
 }
 class Account {

 private int balance = 0;

 public int getBalance() {
 return balance;
 }

 public void deposit(int amount) {

 int newBalance = balance + amount;

 try {
 Thread.sleep(5);
 } catch (InterruptedException ex) {
 // do nothing
 }

 balance = newBalance;
 }
 }
}

Q13-a: When you run AccountWithoutSync.java, what’s the balance?

Q13-b: what’s the problem?

Q13-c: How to fix this problem?

2

The object is shared among multiple threads, which has been corrupted by
different threads.

Public synchronized void deposit(int amount)

