
CompSci 230 

Software Construction
Course Revision: Themes A, B & C

S1 2015



Overview

 In Stage 1, you learned how to write programs to solve small problems.

 In CompSci 230, we teach programming “in the large”.

 Large software systems have many stakeholders.

 What will its users want?

 Can we describe user requirements, accurately and succinctly?

 Large software systems are very complex.

 Can we describe the design of a complex software system, accurately and 
succinctly?

 Can we be sure that a complex system will do what it is designed to do, and that 
it will not do anything unintended?

 In CompSci 230, you will learn some incomplete answers to these 
difficult questions.

 I will also attempt to teach you how to “learn how to learn” the technical skills 
you will need in the future – as a competent computer professional.

2 CompSci 230



Syllabus

 Four Themes:

 A. The object-oriented programming paradigm

 Object-orientation, object-oriented programming concepts and programming 

language constructs – because, for many important problems, OO design is a 

convenient way to express the problem and its solution in software.

 B. Frameworks

 Inversion of control,  AWT/Swing and JUnit – because many important “sub-

problems” have already been solved: these solutions should be re-used!

 C. Software quality

 Testing, inspection, documentation – because large teams are designing, 

implementing, debugging, maintaining, revising, and supporting complex software.

 D. Application-level concurrent programming

 Multithreading concepts, language primitives and abstractions – because even our 

laptops have multiple CPUs.   Dual-core smartphones are now available...

3 CompSci 230



Theme A: The OO Design Paradigm

 Object-orientation, object-oriented programming concepts and 

programming language constructs – because, for many important 

problems, OO design is a convenient way to express the problem 

and its solution in software.

 Topics (by lecture slides):

 01: Intro to Java

 02: Hello World!

 03: Intro to OOD

 04: Use cases

 05: OOD concepts: abstraction, …

 06-08: Java Implementation

CompSci 2304



Software Construction
 Review (or learn for the first time?)

 What is Object-Oriented Programming? 
 Related objects in classes.  State + behaviour.  Instantiation.  Comparison with procedural and data-

architectural styles of programming.

 Classes & Objects
 Message passing by calls, returns, and exceptions

 Variables & Methods (for instances and classes)

 Introduction to OO Design
 A process: 

1. determining what the stakeholders require, 

2. designing a set of classes with objects which will meet these requirements,

3. implementing, and 

4. delivering.

 You learned two new languages:
 Use-case diagram, for requirements

 Class diagram, for design

 Object diagram, to explain “what’s happening” in an implementation

 not emphasised, but may be very helpful for your understanding

CompSci 2305



Use Case Diagrams

 Learning goals for this unit:
 Interpretative: Any student who passes CompSci 230 can accurately interpret the 

information presented in a use-case diagram or description.

 Productive: Any student with a B or better in CompSci 230 can draw up an accurate 
set of use cases from an informal specification. 

 Creative: Excellent CompSci 230 students are able to apply their course-specific 
knowledge in novel situations.  For example, they could discuss the strengths & 
weaknesses of use case analysis as a methodology for requirements capture.  

 Note: I cannot test a students performance on all topics, at all levels, in an hour. 
 The final exam has some questions that are focused at A-level, some at B-level, and 

some at C-level.  I won’t reveal the levels at which topics are tested.

 Some topics won’t be tested at all, but I won’t reveal which ones.

 Such incomplete (and secret) coverage allows a limited range of quality-assurances e.g.
 Any student who knows all important topics “at B level” will get a B. 

 Some B/C-level students will “get lucky” – they’ll also get a B.  

 Students who have only C-level knowledge will get a C.
 It is impossible to write in a language if you can’t read it.  You must be able to read & write in order to 

express novel thoughts.

CompSci 2306



OOD & Class Diagrams

 Abstraction: 

 The ability of a language (and a designer) to take a concept and create an 
abstract representation of that concept within a program

 Information Hiding: 

 How well does this language, designer, and programmer hide an object’s 
internal implementation?

 Polymorphism: 

 How does this language let us treat related objects in a similar fashion?

 Inheritance: 

 The “is-a” relation: important for code reuse.

 Composition, Aggregation, Association: 

 Types of “has-a” relations: ways to build complex classes from simpler 
ones.  (I’m emphasising only the most general case: the “association”.)

CompSci 2307



Java Implementation
 Interfaces and Abstract Classes

 Important in practice, but not emphasised this semester. 

 Java’s type system: Static & dynamic typing, conversions.  
 Very important in practice, rather difficult in theory.

 Visibility
 Important in practice, but not emphasised this semester.

 Overriding, hiding (this is usually evil ;-), shadowing, overloading
 Java syntax: super, this, final.  (Static vs instance methods; name conflicts)

 Type conversions

 Enums

 Java’s runtime system
 A very “deep” topic.  We skimmed over memory allocation.

 Object identity, assignment, equality, copying,
 Very important in practice, with a straightforward theory after you understand 

instantiation (which is moderately complex: object diagrams might help).

CompSci 2308



Theme B: Frameworks

 Inversion of control,  AWT/Swing and JUnit – because many important 

“sub-problems” have already been solved: these solutions should be re-

used!

 Topics (by lecture):

 09: Collections

 10: Introduction to Swing

 11:  Applets and AWT

 12: Swing and MVC

 13: Custom widgets and drawing

CompSci 2309



Collections

 (Why use a framework?  What is a framework?)

 The Collection interface

 Sub-interfaces: 

 List

 Set

 You know a little about Map; there are others, but you haven’t used them

 I don’t expect you to remember the details but you should know 
what operations “make sense” for the interfaces.

 You should know how to implement a traversal using a for-loop (but we 
didn’t explore Iterators)

 Implementations:  ArrayList, LinkedList

 Generic types, e.g.  ArrayList<Integer>

CompSci 23010



Swing and AWT

 Only a few concepts here: 

 windows, components, containers, 

 Model-View-Controller; Swing’s separable model-view.

 I don’t expect you to implement a Swing app “from scratch”, but 

you should be able to interpret a simple code and modify it.

CompSci 23011



Exam Format

 30% short-answer: 

 Allow 45 minutes for this part.

 70% defined response (multiple-choice, true-false).

 About 55 questions, allow 60 minutes for this.

 There is one correct answer.

 If it seems ambiguous, please write a note on the overflow page.

CompSci 23012



Best wishes, and please keep in touch!

 I have enjoyed teaching this course.

 I’d enjoy hearing from you in the future.

 Please don’t hesitate to “volunteer yourself” to give a guest lecture to a 

future CompSci 230 class!

CompSci 23013


