
CompSci 230

Software Construction
Course Revision: Themes A, B & C

S1 2015

Overview

 In Stage 1, you learned how to write programs to solve small problems.

 In CompSci 230, we teach programming “in the large”.

 Large software systems have many stakeholders.

 What will its users want?

 Can we describe user requirements, accurately and succinctly?

 Large software systems are very complex.

 Can we describe the design of a complex software system, accurately and
succinctly?

 Can we be sure that a complex system will do what it is designed to do, and that
it will not do anything unintended?

 In CompSci 230, you will learn some incomplete answers to these
difficult questions.

 I will also attempt to teach you how to “learn how to learn” the technical skills
you will need in the future – as a competent computer professional.

2 CompSci 230

Syllabus

 Four Themes:

 A. The object-oriented programming paradigm

 Object-orientation, object-oriented programming concepts and programming

language constructs – because, for many important problems, OO design is a

convenient way to express the problem and its solution in software.

 B. Frameworks

 Inversion of control, AWT/Swing and JUnit – because many important “sub-

problems” have already been solved: these solutions should be re-used!

 C. Software quality

 Testing, inspection, documentation – because large teams are designing,

implementing, debugging, maintaining, revising, and supporting complex software.

 D. Application-level concurrent programming

 Multithreading concepts, language primitives and abstractions – because even our

laptops have multiple CPUs. Dual-core smartphones are now available...

3 CompSci 230

Theme A: The OO Design Paradigm

 Object-orientation, object-oriented programming concepts and

programming language constructs – because, for many important

problems, OO design is a convenient way to express the problem

and its solution in software.

 Topics (by lecture slides):

 01: Intro to Java

 02: Hello World!

 03: Intro to OOD

 04: Use cases

 05: OOD concepts: abstraction, …

 06-08: Java Implementation

CompSci 2304

Software Construction
 Review (or learn for the first time?)

 What is Object-Oriented Programming?
 Related objects in classes. State + behaviour. Instantiation. Comparison with procedural and data-

architectural styles of programming.

 Classes & Objects
 Message passing by calls, returns, and exceptions

 Variables & Methods (for instances and classes)

 Introduction to OO Design
 A process:

1. determining what the stakeholders require,

2. designing a set of classes with objects which will meet these requirements,

3. implementing, and

4. delivering.

 You learned two new languages:
 Use-case diagram, for requirements

 Class diagram, for design

 Object diagram, to explain “what’s happening” in an implementation

 not emphasised, but may be very helpful for your understanding

CompSci 2305

Use Case Diagrams

 Learning goals for this unit:
 Interpretative: Any student who passes CompSci 230 can accurately interpret the

information presented in a use-case diagram or description.

 Productive: Any student with a B or better in CompSci 230 can draw up an accurate
set of use cases from an informal specification.

 Creative: Excellent CompSci 230 students are able to apply their course-specific
knowledge in novel situations. For example, they could discuss the strengths &
weaknesses of use case analysis as a methodology for requirements capture.

 Note: I cannot test a students performance on all topics, at all levels, in an hour.
 The final exam has some questions that are focused at A-level, some at B-level, and

some at C-level. I won’t reveal the levels at which topics are tested.

 Some topics won’t be tested at all, but I won’t reveal which ones.

 Such incomplete (and secret) coverage allows a limited range of quality-assurances e.g.
 Any student who knows all important topics “at B level” will get a B.

 Some B/C-level students will “get lucky” – they’ll also get a B.

 Students who have only C-level knowledge will get a C.
 It is impossible to write in a language if you can’t read it. You must be able to read & write in order to

express novel thoughts.

CompSci 2306

OOD & Class Diagrams

 Abstraction:

 The ability of a language (and a designer) to take a concept and create an
abstract representation of that concept within a program

 Information Hiding:

 How well does this language, designer, and programmer hide an object’s
internal implementation?

 Polymorphism:

 How does this language let us treat related objects in a similar fashion?

 Inheritance:

 The “is-a” relation: important for code reuse.

 Composition, Aggregation, Association:

 Types of “has-a” relations: ways to build complex classes from simpler
ones. (I’m emphasising only the most general case: the “association”.)

CompSci 2307

Java Implementation
 Interfaces and Abstract Classes

 Important in practice, but not emphasised this semester.

 Java’s type system: Static & dynamic typing, conversions.
 Very important in practice, rather difficult in theory.

 Visibility
 Important in practice, but not emphasised this semester.

 Overriding, hiding (this is usually evil ;-), shadowing, overloading
 Java syntax: super, this, final. (Static vs instance methods; name conflicts)

 Type conversions

 Enums

 Java’s runtime system
 A very “deep” topic. We skimmed over memory allocation.

 Object identity, assignment, equality, copying,
 Very important in practice, with a straightforward theory after you understand

instantiation (which is moderately complex: object diagrams might help).

CompSci 2308

Theme B: Frameworks

 Inversion of control, AWT/Swing and JUnit – because many important

“sub-problems” have already been solved: these solutions should be re-

used!

 Topics (by lecture):

 09: Collections

 10: Introduction to Swing

 11: Applets and AWT

 12: Swing and MVC

 13: Custom widgets and drawing

CompSci 2309

Collections

 (Why use a framework? What is a framework?)

 The Collection interface

 Sub-interfaces:

 List

 Set

 You know a little about Map; there are others, but you haven’t used them

 I don’t expect you to remember the details but you should know
what operations “make sense” for the interfaces.

 You should know how to implement a traversal using a for-loop (but we
didn’t explore Iterators)

 Implementations: ArrayList, LinkedList

 Generic types, e.g. ArrayList<Integer>

CompSci 23010

Swing and AWT

 Only a few concepts here:

 windows, components, containers,

 Model-View-Controller; Swing’s separable model-view.

 I don’t expect you to implement a Swing app “from scratch”, but

you should be able to interpret a simple code and modify it.

CompSci 23011

Exam Format

 30% short-answer:

 Allow 45 minutes for this part.

 70% defined response (multiple-choice, true-false).

 About 55 questions, allow 60 minutes for this.

 There is one correct answer.

 If it seems ambiguous, please write a note on the overflow page.

CompSci 23012

Best wishes, and please keep in touch!

 I have enjoyed teaching this course.

 I’d enjoy hearing from you in the future.

 Please don’t hesitate to “volunteer yourself” to give a guest lecture to a

future CompSci 230 class!

CompSci 23013

