
COMPSCI 230 S2C 2013

Software Design and Construction
Deadlock, Performance, Programming Guidelines

Lecture 6 of Theme C

Learning Goals for Today

 Learn a little more Java:

 wait(), notify(), notifyAll().

 I do not expect you to be able to write code which invokes these

methods appropriately.

 The syntax is uncomplicated, but the code-design issues are very difficult.

 You may be examined on

 Your understanding of the ways in which threads can safely signal each

other, without “stepping on” each others’ variables.

 Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to

deadlock or to corrupted computations.

C62

wait(), notify(), and notifyAll()

 Goetz: “In addition to using polling,

 which can consume substantial CPU resources and has imprecise timing

characteristics,

 the Object class includes several methods for threads to signal events

from one thread to another.”

 Note: Goetz used polling in his TimerTask example.

 Let’s review that example now.

 Polling is a very important design pattern! It is appropriate

 whenever event-signalling isn’t feasible, or

 when the resource and time costs of polling are affordable, for example

when the polling loop won’t run for very long.

C63

Polling a Completion Flag (Goetz1, p. 9-11)

// CalculatePrimes -- calculate as many primes as we can

// in ten seconds

public class CalculatePrimes extends Thread {

public static final int MAX_PRIMES = 1000000;

public static final int TEN_SECONDS = 10000;

public volatile boolean finished = false;

public void run() {

int[] primes = new int[MAX_PRIMES];

int count = 0;

for(int i=2; count<MAX_PRIMES; i++) { // a polling loop

// Check to see if the timer has expired

if (finished) {

break; // this thread stops looking for primes

}

// test i for primality ...

}

}
C64

Polling example (cont.)

public static void main(String[] args) {

Timer timer = new Timer();

final CalculatePrimes calculator = new CalculatePrimes();

calculator.start();

timer.schedule(

new TimerTask() {

public void run() {

calculator.finished = true;

}

},

TEN_SECONDS

);

}

} // end of CalculatePrimes

C65

Responsiveness vs. efficiency in polling

 In CalculatePrimes, the finished flag is polled once for each integer
i that is tested for primality. My evaluation:

 This is a time-efficient design – the workers will spend most of their time testing
for primality, with very little polling overhead.

 This is a responsive design for smallish primes – a worker will execute at most a
million instructions when testing a 5-digit prime number for primality, so it
should “notice” the flag within a few milliseconds.

 If better responsiveness is required, the flag should be polled more
frequently – making the polling less time-efficient…

 Note that you must know a lot about the execution environment, in order to
make a good tradeoff of accuracy for efficiency in polled code.

 Ideally, the polling overhead is a few percent of total runtime. This optimises
responsiveness without noticeably affecting runtime.

 “Keep it simple!” Polling is often an appropriate choice, even though it’s
not as elegant, efficient, or responsive as a more complex method.

C66

Goetz’s Prime-testing Task – my analysis

public void run() {

int[] primes = new int[MAX_PRIMES];

int count = 0;

for (int i=2; count<MAX_PRIMES; i++) {

if (finished) { break; } // poll

boolean prime = true;

for (int j=0; j<count; j++) { // test for primality

if (i % primes[j] == 0) {

prime = false; break;

}

}

// There are 78,498 primes less than MAX_PRIMES (= 1000000),

// so the primality test should complete within a few msec.

if (prime) {

primes[count++] = i;

System.out.println(“Found prime: " + i);

} } }

C6

Overhead of polling Goetz’s flag

 It takes only a few CPU instructions to test a flag
if (finished) { break; }

 Usual case: there is no extra delay on reading a volatile flag, when the
thread already has read-privileges for that flag.

 Occasionally: the thread doesn’t yet have read-privileges, and must wait
for a main-memory read (maybe a few microseconds).

 Worst case: the worker thread must wait for the main() thread to
finish its write.

 This case is extremely rare, because Goetz’s finished flag is written only once per
program execution.

 My estimate: Goetz’s workers spend

 a few microseconds on each poll, and

 a few milliseconds on each primality test when MAX_PRIMES = 1000000.

 The code is probably bottlenecked on println()!

C68

wait(), notify(), and notifyAll()
 Goetz1: “wait() causes the calling thread to sleep until

 it is interrupted with Thread.interrupt(),

 the specified timeout elapses, or

 another thread wakes it up with notify() or notifyAll().

 When notify() is invoked on an object,
 if there are any threads waiting on that object via wait(), then one thread will be

awakened.

 When notifyAll() is invoked on an object, all threads waiting on that
object will be awakened.

 The Object class defines the methods wait(), notify(), and
notifyAll().
 To execute any of these methods, you must be holding the lock for the associated

object.”

 For the CompSci 230 exam:
 you should know that these methods exist, but their details are not examinable!

C69

Usage Notes (Goetz)

 “These methods are the building blocks of more sophisticated

locking, queuing, and concurrency code.

 However, the use of notify() and notifyAll() is complicated.

 In particular, using notify() instead of notifyAll() is risky.

 Use notifyAll() unless you really know what you're doing.

 Rather than use wait() and notify() to write your own

schedulers, thread pools, queues, and locks, you should

 use the util.concurrent package (see Resources),

 a widely used open source toolkit full of useful concurrency utilities.

C610

Thread priorities

 Goetz: “The Thread API allows you to associate an execution

priority with each thread.

 However, how these are mapped to the underlying operating system

scheduler is implementation-dependent.

 In some implementations, multiple – or even all – priorities may be

mapped to the same underlying operating system priority.

 Many people are tempted to tinker with thread priorities when

they encounter a problem like deadlock, starvation, or other

undesired scheduling characteristics.

 More often than not, however, this just moves the problem somewhere

else.

 Most programs should simply avoid changing thread priority.”

C611

Goetz’s warning about thread-safety

 While the thread API is simple, writing thread-safe

programs is not.

 When variables are shared across threads,

 you must take great care to

 ensure that you have properly synchronized both read and write access

to them.

 When writing a variable that may next be read by another thread,

or reading a variable that may have been written by another

thread,

 you must use synchronization to ensure that changes to data are visible

across threads.

C612

Goetz’ final warning

 When using synchronization to protect shared variables,

 you must ensure that

 not only are you using synchronization, but [also that]

 the reader and writer are synchronizing on the same monitor.

 Furthermore,

 if you rely on an object’s state remaining the same across multiple

operations, or

 rely on multiple variables staying consistent with each other (or

consistent with their own past values),

 you must use synchronization to enforce this.

 But simply synchronizing every method in a class does not make it

thread safe – it just makes it more prone to deadlock.

C613

Goetz’s summary

 Every Java program uses threads, whether you know it or not.

 If you are using either of the Java UI toolkits (AWT or Swing),

 Java Servlets,

 RMI, or

 JavaServer Pages or

 Enterprise JavaBeans technologies,

 you may be using threads without realizing it.

 There are a number of situations where you might want to explicitly use
threads to improve the performance, responsiveness, or organization of
your programs. These include:

 Making the user interface more responsive when performing long tasks

 Exploiting multiprocessor systems to handle multiple tasks in parallel

 Simplifying modeling of simulations or agent-based systems

 Performing asynchronous or background processing

C614

Learning Goals for Today

 Learn a little more Java:

 wait(), notify(), notifyAll().

 I do not expect you to be able to write code which invokes these

methods appropriately.

 The syntax is uncomplicated, but the code-design issues are very difficult.

 You may be examined on

 Your understanding of the ways in which threads can safely signal each

other, without “stepping on” each others’ variables.

 Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to

deadlock or to corrupted computations.

C615

