COMPSCI 230 S2C 2013
Software Design and Construction

Deadlock, Performance, Programming Guidelines
Lecture 6 of Theme C

FR/ASA

¥ _Learning Goals for Today

» Learn a little more Java:
walt (), notify (), notifyAll().

| do not expect you to be able to write code which invokes these
methods appropriately.

The syntax is uncomplicated, but the code-design issues are very difficult.
» You may be examined on

Your understanding of the ways in which threads can safely signal each
other, without “stepping on” each others’ variables.

Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to
deadlock or to corrupted computations.

FR/ASA

wait(), notify(), and notifyAll()

» Goetz:“In addition to using polling,

which can consume substantial CPU resources and has imprecise timing
characteristics,

the Object class includes several methods for threads to signal events
from one thread to another.”

» Note: Goetz used polling in his TimerTask example.

Let’s review that example now.

» Polling is a very important design pattern! It is appropriate
whenever event-signalling isn’t feasible, or

when the resource and time costs of polling are affordable, for example
when the polling loop won’t run for very long.

FR/ASA

Polling a Completion Flag (Goetz1, p. 9-11)

// CalculatePrimes -- calculate as many primes as we can
// in ten seconds
public class CalculatePrimes extends Thread {

public static final int MAX PRIMES = 1000000;

public static final int TEN SECONDS = 10000;

public volatile boolean finished = false;

public void run() {
int[] primes = new int[MAX PRIMES];
int count = 0;

for(int i=2; count<MAX PRIMES; i++) { // a polling loop
// Check to see if the timer has expired
if (finished) {
break; // this thread stops looking for primes

}
// test 1 for primality

FR/ASA

¥ _Polling example (cont.)

public static void main(Stringl]

Timer timer = new Timer () ;
final CalculatePrimes calculator
calculator.start ()
timer.schedule (

new TimerTask () {

public void run () {
calculator.finished = true

I
TEN SECONDS

) ;
}

} // end of CalculatePrimes

5

args) {

°
14

new CalculatePrimes|();

C6

FR/ASA

Z_Responsiveness vs. efficiency in polling

» In CalculatePrimes,the finished flag is polled once for each integer
i that is tested for primality. My evaluation:

This is a time-efficient design — the workers will spend most of their time testing
for primality, with very little polling overhead.

This is a responsive design for smallish primes — a worker will execute at most a
million instructions when testing a 5-digit prime number for primality, so it
should “notice” the flag within a few milliseconds.

» If better responsiveness is required, the flag should be polled more
frequently — making the polling less time-efficient...

Note that you must know a lot about the execution environment, in order to
make a good tradeoff of accuracy for efficiency in polled code.

|deally, the polling overhead is a few percent of total runtime. This optimises
responsiveness without noticeably affecting runtime.

» “Keep it simple!” Polling is often an appropriate choice, even though it’s
not as elegant, efficient, or responsive as a more complex method.

FR/ASA

F_Goetz’s Prime-testing Task — my analysis

public void run() {
int[] primes = new int[MAX PRIMES];
int count = 0;

for (int 1=2; count<MAX PRIMES; i++) {
if (finished) { break; } // poll

boolean prime = true;
for (int j=0; j<count; j++) { // test for primality
if (i % primes[j] == 0) {

prime = false; break;

}
// There are 78,498 primes less than MAX PRIMES (= 1000000),

// so the primality test should complete within a few msec.
if (prime) {

primes|[count++] = 1;

System.out.println(“Found prime: " + 1);

bl
C6

S22
Overhead of polling Goetz’s flag

» It takes only a few CPU instructions to test a flag
if (finished) { break; }

Usual case: there is no extra delay on reading a volatile flag, when the
thread already has read-privileges for that flag.

Occasionally: the thread doesn’t yet have read-privileges, and must wait
for a main-memory read (maybe a few microseconds).

Worst case: the worker thread must wait for the main () thread to

finish its write.
This case is extremely rare, because Goetz’s finished flag is written only once per
program execution.

» My estimate: Goetz’s workers spend

a few microseconds on each poll, and
a few milliseconds on each primality test when MAX PRIMES = |000000.

The code is probably bottlenecked on println ()!

C6

FR/ASA

@ wait(), notify(), and notifyAll()

THE UNIVERSITY OF AUCKLAND

» Goetzl:“wait () causes the calling thread to sleep until

it is interrupted with Thread.interrupt (),

the specified timeout elapses, or

another thread wakes it up with notify () ornotifyAll ().
» When notify () is invoked on an obiject,

if there are any threads waiting on that object via wait (), then one thread will be
awakened.

» When notifyAll () is invoked on an object, all threads waiting on that
object will be awakened.

» The Object class defines the methods wait (),notify(),and
not1fyAll ().

To execute any of these methods, you must be holding the lock for the associated
object.”

» For the CompSci 230 exam:
you should know that these methods exist, but their details are not examinable!

C6

FR/ASA

ZF_Usage Notes (Goetz)

» “These methods are the building blocks of more sophisticated
locking, queuing, and concurrency code.
However, the use of notify () and notifyAll () is complicated.
In particular, using notify () instead of notifyAll () is risky.

Use notifyAll () unless you really know what you're doing.

» Rather than use wait () and notify () to write your own
schedulers, thread pools, queues, and locks, you should

use the util.concurrent package (see Resources),

a widely used open source toolkit full of useful concurrency utilities.

10 C6

FR/ASA

¥ _Thread priorities

» Goetz:“The Thread API allows you to associate an execution
priority with each thread.

However, how these are mapped to the underlying operating system
scheduler is implementation-dependent.

In some implementations, multiple — or even all — priorities may be
mapped to the same underlying operating system priority.
» Many people are tempted to tinker with thread priorities when
they encounter a problem like deadlock, starvation, or other
undesired scheduling characteristics.

More often than not, however, this just moves the problem somewhere
else.

Most programs should simply avoid changing thread priority.”

11

FR/ASA

F_Goetz’s warning about thread-safety

» While the thread API is simple, writing thread-safe
programs is not.

» When variables are shared across threads,

you must take great care to
ensure that you have properly synchronized both read and write access
to them.
» When writing a variable that may next be read by another thread,
or reading a variable that may have been written by another
thread,

you must use synchronization to ensure that changes to data are visible
across threads.

12 C6

FR/ASA

F_Goetz’ final warning

» When using synchronization to protect shared variables,

you must ensure that
not only are you using synchronization, but [also that]
the reader and writer are synchronizing on the same monitor.

» Furthermore,

if you rely on an object’s state remaining the same across multiple
operations, or

rely on multiple variables staying consistent with each other (or
consistent with their own past values),

you must use synchronization to enforce this.

» But simply synchronizing every method in a class does not make it
thread safe — it just makes it more prone to deadlock.

13

C6

FR/ASA

F_Goetz’s summary

» Every Java program uses threads, whether you know it or not.

» If you are using either of the Java Ul toolkits (AWT or Swing),
Java Servlets,
RMI, or
JavaServer Pages or
Enterprise JavaBeans technologies,
you may be using threads without realizing it.

» There are a number of situations where you might want to explicitly use
threads to improve the performance, responsiveness, or organization of
your programs. These include:

Making the user interface more responsive when performing long tasks
Exploiting multiprocessor systems to handle multiple tasks in parallel
Simplifying modeling of simulations or agent-based systems

Performing asynchronous or background processing

14 C6

FR/ASA

¥ _Learning Goals for Today

» Learn a little more Java:

walt (), notify (), notifyAll().

| do not expect you to be able to write code which invokes these
methods appropriately.

The syntax is uncomplicated, but the code-design issues are very difficult.

» You may be examined on

15

Your understanding of the ways in which threads can safely signal each
other, without “stepping on” each others’ variables.

Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to
deadlock or to corrupted computations.

C6

