
COMPSCI 230 S2C 2013

Software Design and Construction
Deadlock, Performance, Programming Guidelines

Lecture 6 of Theme C

Learning Goals for Today

 Learn a little more Java:

 wait(), notify(), notifyAll().

 I do not expect you to be able to write code which invokes these

methods appropriately.

 The syntax is uncomplicated, but the code-design issues are very difficult.

 You may be examined on

 Your understanding of the ways in which threads can safely signal each

other, without “stepping on” each others’ variables.

 Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to

deadlock or to corrupted computations.

C62

wait(), notify(), and notifyAll()

 Goetz: “In addition to using polling,

 which can consume substantial CPU resources and has imprecise timing

characteristics,

 the Object class includes several methods for threads to signal events

from one thread to another.”

 Note: Goetz used polling in his TimerTask example.

 Let’s review that example now.

 Polling is a very important design pattern! It is appropriate

 whenever event-signalling isn’t feasible, or

 when the resource and time costs of polling are affordable, for example

when the polling loop won’t run for very long.

C63

Polling a Completion Flag (Goetz1, p. 9-11)

// CalculatePrimes -- calculate as many primes as we can

// in ten seconds

public class CalculatePrimes extends Thread {

public static final int MAX_PRIMES = 1000000;

public static final int TEN_SECONDS = 10000;

public volatile boolean finished = false;

public void run() {

int[] primes = new int[MAX_PRIMES];

int count = 0;

for(int i=2; count<MAX_PRIMES; i++) { // a polling loop

// Check to see if the timer has expired

if (finished) {

break; // this thread stops looking for primes

}

// test i for primality ...

}

}
C64

Polling example (cont.)

public static void main(String[] args) {

Timer timer = new Timer();

final CalculatePrimes calculator = new CalculatePrimes();

calculator.start();

timer.schedule(

new TimerTask() {

public void run() {

calculator.finished = true;

}

},

TEN_SECONDS

);

}

} // end of CalculatePrimes

C65

Responsiveness vs. efficiency in polling

 In CalculatePrimes, the finished flag is polled once for each integer
i that is tested for primality. My evaluation:

 This is a time-efficient design – the workers will spend most of their time testing
for primality, with very little polling overhead.

 This is a responsive design for smallish primes – a worker will execute at most a
million instructions when testing a 5-digit prime number for primality, so it
should “notice” the flag within a few milliseconds.

 If better responsiveness is required, the flag should be polled more
frequently – making the polling less time-efficient…

 Note that you must know a lot about the execution environment, in order to
make a good tradeoff of accuracy for efficiency in polled code.

 Ideally, the polling overhead is a few percent of total runtime. This optimises
responsiveness without noticeably affecting runtime.

 “Keep it simple!” Polling is often an appropriate choice, even though it’s
not as elegant, efficient, or responsive as a more complex method.

C66

Goetz’s Prime-testing Task – my analysis

public void run() {

int[] primes = new int[MAX_PRIMES];

int count = 0;

for (int i=2; count<MAX_PRIMES; i++) {

if (finished) { break; } // poll

boolean prime = true;

for (int j=0; j<count; j++) { // test for primality

if (i % primes[j] == 0) {

prime = false; break;

}

}

// There are 78,498 primes less than MAX_PRIMES (= 1000000),

// so the primality test should complete within a few msec.

if (prime) {

primes[count++] = i;

System.out.println(“Found prime: " + i);

} } }

C6

Overhead of polling Goetz’s flag

 It takes only a few CPU instructions to test a flag
if (finished) { break; }

 Usual case: there is no extra delay on reading a volatile flag, when the
thread already has read-privileges for that flag.

 Occasionally: the thread doesn’t yet have read-privileges, and must wait
for a main-memory read (maybe a few microseconds).

 Worst case: the worker thread must wait for the main() thread to
finish its write.

 This case is extremely rare, because Goetz’s finished flag is written only once per
program execution.

 My estimate: Goetz’s workers spend

 a few microseconds on each poll, and

 a few milliseconds on each primality test when MAX_PRIMES = 1000000.

 The code is probably bottlenecked on println()!

C68

wait(), notify(), and notifyAll()
 Goetz1: “wait() causes the calling thread to sleep until

 it is interrupted with Thread.interrupt(),

 the specified timeout elapses, or

 another thread wakes it up with notify() or notifyAll().

 When notify() is invoked on an object,
 if there are any threads waiting on that object via wait(), then one thread will be

awakened.

 When notifyAll() is invoked on an object, all threads waiting on that
object will be awakened.

 The Object class defines the methods wait(), notify(), and
notifyAll().
 To execute any of these methods, you must be holding the lock for the associated

object.”

 For the CompSci 230 exam:
 you should know that these methods exist, but their details are not examinable!

C69

Usage Notes (Goetz)

 “These methods are the building blocks of more sophisticated

locking, queuing, and concurrency code.

 However, the use of notify() and notifyAll() is complicated.

 In particular, using notify() instead of notifyAll() is risky.

 Use notifyAll() unless you really know what you're doing.

 Rather than use wait() and notify() to write your own

schedulers, thread pools, queues, and locks, you should

 use the util.concurrent package (see Resources),

 a widely used open source toolkit full of useful concurrency utilities.

C610

Thread priorities

 Goetz: “The Thread API allows you to associate an execution

priority with each thread.

 However, how these are mapped to the underlying operating system

scheduler is implementation-dependent.

 In some implementations, multiple – or even all – priorities may be

mapped to the same underlying operating system priority.

 Many people are tempted to tinker with thread priorities when

they encounter a problem like deadlock, starvation, or other

undesired scheduling characteristics.

 More often than not, however, this just moves the problem somewhere

else.

 Most programs should simply avoid changing thread priority.”

C611

Goetz’s warning about thread-safety

 While the thread API is simple, writing thread-safe

programs is not.

 When variables are shared across threads,

 you must take great care to

 ensure that you have properly synchronized both read and write access

to them.

 When writing a variable that may next be read by another thread,

or reading a variable that may have been written by another

thread,

 you must use synchronization to ensure that changes to data are visible

across threads.

C612

Goetz’ final warning

 When using synchronization to protect shared variables,

 you must ensure that

 not only are you using synchronization, but [also that]

 the reader and writer are synchronizing on the same monitor.

 Furthermore,

 if you rely on an object’s state remaining the same across multiple

operations, or

 rely on multiple variables staying consistent with each other (or

consistent with their own past values),

 you must use synchronization to enforce this.

 But simply synchronizing every method in a class does not make it

thread safe – it just makes it more prone to deadlock.

C613

Goetz’s summary

 Every Java program uses threads, whether you know it or not.

 If you are using either of the Java UI toolkits (AWT or Swing),

 Java Servlets,

 RMI, or

 JavaServer Pages or

 Enterprise JavaBeans technologies,

 you may be using threads without realizing it.

 There are a number of situations where you might want to explicitly use
threads to improve the performance, responsiveness, or organization of
your programs. These include:

 Making the user interface more responsive when performing long tasks

 Exploiting multiprocessor systems to handle multiple tasks in parallel

 Simplifying modeling of simulations or agent-based systems

 Performing asynchronous or background processing

C614

Learning Goals for Today

 Learn a little more Java:

 wait(), notify(), notifyAll().

 I do not expect you to be able to write code which invokes these

methods appropriately.

 The syntax is uncomplicated, but the code-design issues are very difficult.

 You may be examined on

 Your understanding of the ways in which threads can safely signal each

other, without “stepping on” each others’ variables.

 Your analysis of a multithreaded code, to determine whether or not there

is some inappropriate interaction between its thread which may lead to

deadlock or to corrupted computations.

C615

