
COMPSCI 230 S2C 2015

Software Design and Construction

 Lecture 5 of Theme C

Locking, blocking, mutex; visibility, consistency

Learning Goals for Today

 Develop a “theoretical” understanding of concurrency

 Learn a new word and a new concept: mutex, and mutual exclusion

 Work through a few more examples

 Know Goetz’s advice on when to use, and when not to use,

synchronization.

 Be able to diagnose a deadlocked system

 Note: deadlock avoidance is beyond the scope of CompSci 230.

 Start to develop your own position on the relative importance of

designing for features, correctness, security, and performance.

 Agility and maintainability may be more important than some of the

above… remember XP?

 Consider taking Goetz’s advice and my advice, then decide for yourself!

C5 2

Atomicity isn’t quite enough

 Up to now, we have talked about “threads running into each other”,

“stepping on each other”, “over-writing each other’s data”, and

“interrupting each other”.

 This is a vague statement of a major problem in concurrent programming.

 Wikipedia has a nice definition: “In concurrent programming, an operation

(or set of operations) is atomic… if it appears to the rest of the system

to occur instantaneously.”

 If only one thread is allowed to execute, then atomicity is trivial.

 We need a “fairness” property too! Every thread should have a “fair

chance” of entering a synchronized block.

 The fairness properties of Java are outside the scope of CompSci 230.

 Unfairness is observable in A4v0. Some workers are given more CPU time

than others, and finish their task sooner; all tasks are of similar size.

C5 3

Mutual Exclusion: A Solvable Problem

 Dijkstra (1965): “… computers have to be programmed in such a
way that

 at any moment only one of [their programs] is in its critical section…

 [This is the problem of] mutual exclusion of critical-section execution…”

 Java’ provides a solution to Dijkstra’s “mutual exclusion problem”.

 Critical sections can be implemented, in Java, as synchronized blocks.

 The monitor object (or lock) on a synchronized block is sometimes called a
mutex.

 Dijkstra excludes static-priority schemes.

 For example, a system in which “the main() thread controls the mutexes of
all worker threads” does not provide mutual exclusion.

 The fairness of a mutex is a contentious issue in co-design contracts:

 Language designers versus OS designers, versus hardware designers;

 Ease of programming versus performance, versus computational cost.
C5 4

Synchronizing for Visibility (Goetz)

 “When an object acquires a lock, it first invalidates its cache,

 so that it is guaranteed to load variables directly from main memory.

 “Similarly, before an object releases a lock, it flushes its cache,

 forcing any changes made to appear in main memory.

 “In this way, two threads that synchronize on the same lock are

 guaranteed to see the same values in variables modified inside a

synchronized block.

 “The basic rule for synchronizing for visibility is that you must

synchronize whenever you are:

 “Reading a variable that may have been last written by another

thread, [or]

 “Writing a variable that may be read next by another thread.”
C5 5

My advice on synchronized

 Let the package-writers do the heavy-lifting – it’s very difficult to write

synchronized code.

 SwingWorkers is pretty easy to use.

 The Concurrency package will give you some additional options..

 There are no synchronized methods in a4v0.jar

 Any field or variable written by a SwingWorker’s doInBackground() method

is not reliably communicated to the model. So: each SwingWorker has a

MandelTask object. Each worker writes its results into this object using its

worker thread, that is, when its doInBackground() method is invoked.

 Each SwingWorker writes its results into the model when its done() method

is invoked – and this method is invoked on the EDT.

 See https://docs.oracle.com/javase/tutorial/uiswing/concurrency/simple.html if

you want to learn more, but this isn’t examinable.

C5 6

https://docs.oracle.com/javase/tutorial/uiswing/concurrency/simple.html

Synchronizing for Consistency (Goetz)
 “… you must also synchronize to ensure that consistency is maintained from

an application perspective.

 “When modifying multiple related values,
 you want other threads to see that set of changes atomically – either all of the

changes or none of them.

 “This applies to
 related data items (such as the position and velocity of a particle) and

 metadata items (such as the data values contained in a linked list and the chain of
entries in the list itself).”

 I’d say Goetz is giving good advice here, if your workers really must interact
with each other in order to complete their task.
 I occasionally use synchronization, but I only very rarely use lower-level constructs

(e.g. volatile booleans), to ensure consistency and visibility.

 “A spoonful of sugar helps the medicine go down”!

 My advice: try to define tasks that can be done independently, so that you don’t have
to worry about workers getting consistent information from each other.

C5 7

Hacking a stack – what’s dangerous here?

public class UnsafeStack {

 public int top = 0;

 public int[] values = new int[1000];

 public void push(int n) {

 values[top++] = n;

 }

 public int pop() {

 return values[--top];

} }

 “What happens if more than one thread tries to use this class at

the same time? It could be a disaster.”

C5 8

public class UnsafeStack {

 public int top = 0;

 public int[] values = new int[1000];

 public void push(int n) {

 values[top++] = n;

 }

 public int pop() {

 return values[--top];

} }

 “Because there's no synchronization,

 multiple threads could execute push() and pop() at the same time.

 What if one thread calls push() and another thread calls push()…

 between the time top is incremented and it is used as an index into values?

 Then both threads would store their new value in the same location!”

Hacking a stack – what’s dangerous here?

C5 9

Hacking a stack – what’s dangerous here?
public class UnsafeStack {

 public int top = 0;

 public int[] values = new int[1000];

 public void push(int n) {

 values[top++] = n;

 }

 public int pop() {

 return values[--top];

} }

 “In this case, the cure is simple …

 synchronize both push() and pop(), and you'll prevent one thread
from stepping on another.

 “Note that using volatile would not have been enough…”
 (Do you understand why?)

C5 10

Incrementing a shared counter
public class Counter {

 private int counter = 0;

 public int get() {

 return counter;

 }

 public void set(int n) {

 counter = n;

 }

 public void increment() {

 set(get() + 1);

} }

 Is this class thread-safe?
 Thread-safety won’t be formally defined in CompSci 230.

 Informal question: “If multiple threads access these class methods, will this
expose defects of visibility, consistency, or fairness?”

 Fairness defects are out of scope for CompSci 230. Let’s consider visibility first.

C5 11

Incrementing a shared counter: visibility?
public class Counter {

 private int counter = 0;

 public int get() {

 return counter;

 }

 public void set(int n) {

 counter = n;

 }

 public void increment() {

 set(get() + 1);

} }

 If a thread invokes the set() method on the same instance of
Counter, either directly or indirectly through increment(),
 The new value might not be visible to another thread.

 Possible fixes:

1. make counter volatile, or

2. synchronize set().
C5 12

Incrementing a shared counter
public class Counter {

 private volatile int counter = 0;

 public int get() {

 return counter;

 }

 public void set(int n) {

 counter = n;

 }

 public void increment() {

 set(get() + 1);

} }

 Is this a thread-safe class?
 No, concurrent invocations of increment() may expose an atomicity

defect.

 Both threads might get(); then both threads might add one and set().
C5 13

Incrementing a shared counter

public class Counter {

 private int counter = 0;

 public int get() {

 return counter;

 }

 public synchronized void set(int n) {

 counter = n;

 }

 public void increment() {

 set(get() + 1);

} }

 Is this thread-safe?

 No, because concurrent invocations of increment() aren’t atomic.

C5 14

Incrementing a shared counter

public class Counter {

 private int counter = 0;

 public int get() {

 return counter;

 }

 public synchronized void set(int n) {

 counter = n;

 }

 public synchronized void increment() {

 set(get() + 1);

} }

 Is this thread-safe?

 No, now there’s a visibility problem with get() after set().

C5 15

Incrementing a shared counter

public class Counter {

 private int counter = 0;

 public synchronized int get() {

 return counter;

 }

 public synchronized void set(int n) {

 counter = n;

 }

 public synchronized void increment() {

 set(get() + 1);

} }

 Is this thread-safe?

 Yes, I think so. (So does Goetz.)

C5 16

Incrementing a shared counter

public class Counter {

 public int counter = 0;

 public synchronized int get() {

 return counter;

 }

 public synchronized void set(int n) {

 counter = n;

 }

 public synchronized void increment() {

 set(get() + 1);

} }

 Is this thread-safe?

 NO!!!!

C5 17

Immutability

 A class is immutable if it enforces a “write-once, before-any-read”
property on its instances.

 Many Java classes, including String, Integer, and BigDecimal, are
immutable – their value cannot change after they are initialised.

 The advantage of immutability, from a thread-safety perspective, is that
there is only one execution sequence to consider:

 1) instantiation; 2) the final write; 3) any number of concurrent reads.

 Note: because there is only a single write, it can’t be concurrent.

 A class is immutable if all of its fields are declared final.

 This isn’t always desirable.

 Many immutable classes gain a performance advantage from having non-final
fields which are invisible to the caller, such as String.hashCode().

 Even if an entire class isn’t immutable, you don’t need to synchronize
access to its final fields.

 Goetz’s advice: Final is “thread-friendly”. Use it as much as possible!
C5 18

When you don’t need to synchronize

 Goetz identifies a few safe harbours. “You don’t need to

synchronize your cross-thread data propagations

 “When data is initialized by a static initializer (an initializer on a static field
or in a static{} block)

 “When accessing final fields

 “When an object is created before a thread is created

 “When an object is already visible to a thread that it is then joined with”

C5 19

Deadlock

 “Whenever you have multiple processes contending for exclusive
access to multiple locks, there is the possibility of deadlock.

 “A set of processes or threads is said to be deadlocked when each is
waiting for an action that only one of the others can perform.

 “The most common form of deadlock is when

 “Thread 1 holds a lock on Object A and is waiting for the lock on Object
B, and

 “Thread 2 holds the lock on Object B and is waiting for the lock on
Object A.

 “Neither thread will ever acquire the second lock or relinquish the first
lock. They will simply wait forever.”

 Dijkstra, in EWD 123 (1968):

 “This situation, when one process can only continue provided the other
one is killed first, is called ‘The Deadly Embrace’. ”

C5 20

http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

Blocks escalating to deadlocks (Teratrax)

 “The following diagram shows the
sequence of events leading to a
deadlock.

 Consider two applications (A1, A2)
accessing two different [tables] (T1, T2):

 Event 1: A1 places a lock on T1 inside its
transaction [or synchronized block] and
continues to execute other statements

 Event 2: A2 places a lock on T2 inside its
transaction and continues to execute
other statements

 Event 3: A1 attempts to place a lock on
T2 ([because it needs] to access T2
before it can finish the transaction) but
has to wait for A2 to release its lock

At this point, a block is created since A2 is
blocking A1

 Event 4: While A1 is waiting, A2 attempts

to place a lock on T1 ([because it needs]

to access T1 before it can finish its own

transaction)

A deadlock is created since two connections

have blocked one another.

SQL Server automatically resolves the

deadlock by choosing one of the connections

as a deadlock victim and killing it.” C5 21

http://www.teratrax.com/sql-server-blocking-deadlocks/

Deadlock Avoidance

 Goetz: “To avoid deadlock, you should ensure that

 when you acquire multiple locks, you always acquire the locks in the same

order in all threads.”

 This is sound advice

 but it’s beyond the scope of CompSci 230!

 I don’t expect you to be able to design a multi-threaded program with

multiple locks.

 I do expect you to realise that deadlock is possible, and that deadlock can

be avoided in a program if its designer is able to construct a partial order

on lock acquisition that will get the job done safely.

C5 22

Deadlock Detection

 Deadlock detection is easier than avoidance

 A program that is deadlocked is likely to be “hung” (non-responsive).

 Any deadlocked program has at least two threads that are blocked or waiting.

 Discovering the state of a thread

1. If you send a QUIT signal to a JVM (on most systems, typing CTRL-BREAK will
do this) it will probably call its thread-dump method before exiting.

 CTRL-C usually sends a SIGINT signal (an interrupt); to get a thread-dump, you want
to send a SIGBREAK signal to the JVM.

2. If you attach a debugger to a Java program (using the JDI interface to its JVM),
you can see which threads are in the BLOCKED and WAITING states.

3. You can invoke the getStackTrace() method of any thread you suspect of being
deadlocked, at the point where you think it may be deadlocked.

 You’ll have to interrupt the deadlocked thread!

 Use a try-catch structure, with the getStackTrace() in the catch handler.

C5 23

Performance considerations

 Goetz: “There has been a lot written – much of it wrong – on the

performance costs of synchronization.

 It is true that synchronization, especially contended synchronization, has

performance implications, but these may not be as large as is widely

suspected.

 “Many people have gotten themselves in trouble by using fancy

but ineffective tricks to try to avoid having to synchronize.

 One classic example is the double-checked locking pattern (see

Resources for several articles on what's wrong with it).

 This harmless-looking construct purported to avoid

synchronization on a common codepath, but was subtly broken, and

all attempts to fix it were also broken.”

C5 24

Goetz’s advice on performance-tuning

 “When writing concurrent code, don't worry so much about
performance until you've actually seen evidence of performance
problems.
 “Bottlenecks appear in the places we often least suspect.

 “Speculatively optimizing one code path
 that may not even turn out to be a performance problem –

 at the cost of program correctness –

 is a false economy.”

 I agree with Goetz regarding performance-tuning.
 You should get the program features working before you try to optimise their

performance.

 But… maybe your experience will be different?

 In my experience, the most important objective is “features”.
 Then correctness, then security, then (if there’s a problem) performance.

 Maintainability and agility are also important!

C5 25

Guidelines for synchronization (Goetz)

 “There are a few simple guidelines you can follow when writing
synchronized blocks that will go a long way toward helping you to avoid
the risks of deadlock and performance hazards:

 Keep blocks short.

 Synchronized blocks should be short – as short as possible while still protecting
the integrity of related data operations.

 Move thread-invariant pre-processing and post-processing out of synchronized
blocks.

 Don't block.

 Don't ever call a method that might block, such as InputStream.read(),
inside a synchronized block or method.

 Don't invoke methods on other objects while holding a lock.

 This may sound extreme, but it eliminates the most common source of
deadlock.

C5 26

Learning Goals for Today

 Develop a “theoretical” understanding of concurrency

 Learn a new word and a new concept: mutex, and mutual exclusion

 Work through a few more examples

 Know Goetz’s advice on when to use, and when not to use,

synchronization.

 Be able to diagnose a deadlocked system

 Note: deadlock avoidance is beyond the scope of CompSci 230.

 Start to develop your own position on the relative importance of

designing for features, correctness, security, and performance.

 Agility and maintainability may be more important than some of the

above… remember XP?

 Consider taking Goetz’s advice and my advice, then decide for yourself!

C5 27

