
COMPSCI 230 S2C 2015

Software Design and Construction

 Synchronization (cont.)

Lecture 4 of Theme C

Learning Goals for Today

 Develop a stronger understanding of synchronization in Java.

 Be able to analyse codes with a small number of interactions between a

few threads, answering the question “what execution traces are possible?”

 Learn the syntax for synchronized methods

 What are the disadvantages of this “syntactic sugar”?

 Learn an important design pattern: using a final instance of a

collection to synchronize its methods.

 A simple example: a thread-safe cache

C4 2

Goetz’s “Simple Synchronization Example”

 “Using synchronized blocks allows you

 to perform a group of related updates as a set

 without worrying about other threads

 interrupting or seeing the intermediate results of a computation. “

 Do you understand why you should be concerned if

 Other threads can interrupt a worker thread, or if

 Other threads can see a worker’s intermediate results?

C4 3

Atomicity, in detail

 Atomic reading:

 The variables read by a worker (in an atomic task) must be “locked” against
changes by other threads -- until the worker has completed the task.

 Atomic writing:

 A worker’s writes must be invisible to other threads until the worker has
finished their atomic task – and they must be visible to the next worker who
enters this task.

 Atomic completion:

 While a worker is performing an atomic task, it should not be interrupted by
other workers.

 This is not an absolute prohibition.

 If a thread is interrupted, it has to start over from the beginning of the task – and
this slows progress.

 In an extreme case (called livelock), every worker attempting the task is
interrupted by another worker, so the task is never completed!

C4 4

The top-level structure of Goetz’s example

public class SyncExample {

 private static Object lockObject = new Object();

 private static class Thread1 extends Thread {

 … // on next slide

 }

 private static class Thread2 extends Thread {

 … // on next slide

 }

 public static void main(String[] args) {

 new Thread1().start();

 new Thread2().start();

 }

} C4 5

Thread classes in Goetz’s example

 private static class Thread1 extends Thread {

 public void run() {

 synchronized(lockObject) {

 x = y = 0;

 System.out.println(x);

 } } }

 private static class Thread2 extends Thread {

 public void run() {

 synchronized(lockObject) {

 x = y = 1;

 System.out.println(y);

 } } }

0

1

1

0
or

Expected
output:

• A thread cannot execute a
synchronized block until it
acquires the “lock” on the block’s
monitor.

• The lock is released when the
thread exits the block.

• A lock has at most one owner at
any time.

• A thread can own many locks.
C4 6

Unsynchronized threads

 private static class Thread1 extends Thread {

 public void run() {

 y = 0;

 x = y = 0;

 x = 0;

 System.out.println(x);

 }

 }

 private static class Thread2 extends Thread {

 public void run() {

 y = 1;

 x = y = 1;

 x = 1;

 System.out.println(y);

 }

 }

0

1

1

0
or

Expected
output:

or

1

1

or

0

0

C4 7

Synchronized Methods

 We can synchronize the body of a method using this as its lock:
public class Point {

 public void setXY(int x, int y) {

 synchronized (this) {

 this.x = x; this.y = y;

} } }

 This is a very common structure, so Java includes the “synchronized
method” as syntactic sugar.

 See http://en.wikipedia.org/wiki/Syntactic_sugar

 The following is equivalent, and is sweeter to read and write.
public class Point {

 public synchronized void setXY(int x, int y) {

 this.x = x; this.y = y;

} }

 Warning: sugar is very unhealthy if you don’t “eat your vegetables” too!

C4 8

http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Syntactic_sugar

public class SyncExample {

 public static class Thingie {

 private Date lastAccess;

 public synchronized void setLastAccess(Date date) {

 this.lastAccess = date;

 } }

 public static class MyThread extends Thread {

 private Thingie thingie;

 public MyThread(Thingie thingie) {

 this.thingie = thingie;

 }

 public void run() {

 thingie.setLastAccess(new Date());

 } }

 public static void main() {

 Thingie thingie1 = new Thingie(),

 thingie2 = new Thingie();

 new MyThread(thingie1).start();

 new MyThread(thingie2).start();

} }

Dangerous Sugar…

• setLastAccess() is a

synchronized method, so
each instance has its
own lock.

• This method is unsafe,
because the first worker
thread can acquire the
lock on thingie1 at

the same time the
second worker acquires a
lock on thingie2. C4 9

Goetz’s Advice on Synchronization

 “Because synchronization prevents multiple threads from executing
a block at once,

 it has performance implications, even on uniprocessor systems.

 “It is a good practice to

 use synchronization around the smallest possible block of code that
needs to be protected.

 “Access to local (stack-based) variables never need to be
protected,

 because they are only accessible from the owning thread.”

 In other words:

 if you’re concerned about performance, don’t use this syntactic sugar
(unless the whole method really needs to be “sweet” ;-).

C4 10

Most Java Classes are not Synchronized!

 Java has nice support for threads, but you have to be very careful
whenever multiple threads can access the same object.

 Goetz: “Because synchronization carries a small performance penalty,
 most general-purpose classes, like the Collection classes in
java.util, do not use synchronization internally.

 This means that classes like HashMap cannot be used from multiple threads
without additional synchronization.

 “You can use the Collections classes in a multithreaded
application
 by using synchronization every time you access a method in a shared

collection.

 For any given collection, you must synchronize on the same lock each time.

 A common choice of lock would be the collection object itself.

 “If the documentation for a class does not say that it is thread-safe,
then you must assume that it is not.”

C4 11

public class SimpleCache {

 private final Map cache = new HashMap();

 public Object load(String objectName) {

 // load the object somehow

 }

 public void clearCache() {

 synchronized(cache) {

 cache.clear();

 } }

 public Object getObject(String objectName) {

 synchronized(cache) {

 Object o = cache.get(objectName);

 if(o == null) {

 o = load(objectName);

 cache.put(objectName, o);

 } }

 return o;

 }

}

A Simple Thread-Safe Cache

• This code is
synchronized on a
single (final)
instance of a
cache object.

• The cache.clear()
method will never
run concurrently
with a cache.get()
or cache.put().

• Cache updates are
atomic: the
cache.get()…
cache.put()
sequence won’t
be interrupted.

C4 12

Sharing access to data summary (Goetz)

 “Because the timing of thread execution is nondeterministic, we
need to be careful to control a thread’s access to shared data.

 Otherwise, multiple concurrent threads could step on each other's
changes and result in corrupted data, or

 changes to shared data might not be made visible to other threads on a
timely basis.

 “By using synchronization to protect access to shared variables,

 we can ensure that threads interact with program variables in predictable
ways.

 “Every Java object can act as a lock, and synchronized blocks can
ensure that

 only one thread executes synchronized code protected by a given lock at
one time.”

C4 13

Learning Goals for Today

 Develop a stronger understanding of synchronization in Java.

 Be able to analyse codes with a small number of interactions between a

few threads, answering the question “what execution traces are possible?”

 Learn the syntax for synchronized methods

 What are the disadvantages of this “syntactic sugar”?

 Learn an important design pattern: using a final instance of a

collection to synchronize its methods.

 A simple example: a thread-safe cache

C4 14

