
COMPSCI 230 S2C 2015

Software Design and Construction

 Synchronization (cont.)

Lecture 4 of Theme C

Learning Goals for Today

 Develop a stronger understanding of synchronization in Java.

 Be able to analyse codes with a small number of interactions between a

few threads, answering the question “what execution traces are possible?”

 Learn the syntax for synchronized methods

 What are the disadvantages of this “syntactic sugar”?

 Learn an important design pattern: using a final instance of a

collection to synchronize its methods.

 A simple example: a thread-safe cache

C4 2

Goetz’s “Simple Synchronization Example”

 “Using synchronized blocks allows you

 to perform a group of related updates as a set

 without worrying about other threads

 interrupting or seeing the intermediate results of a computation. “

 Do you understand why you should be concerned if

 Other threads can interrupt a worker thread, or if

 Other threads can see a worker’s intermediate results?

C4 3

Atomicity, in detail

 Atomic reading:

 The variables read by a worker (in an atomic task) must be “locked” against
changes by other threads -- until the worker has completed the task.

 Atomic writing:

 A worker’s writes must be invisible to other threads until the worker has
finished their atomic task – and they must be visible to the next worker who
enters this task.

 Atomic completion:

 While a worker is performing an atomic task, it should not be interrupted by
other workers.

 This is not an absolute prohibition.

 If a thread is interrupted, it has to start over from the beginning of the task – and
this slows progress.

 In an extreme case (called livelock), every worker attempting the task is
interrupted by another worker, so the task is never completed!

C4 4

The top-level structure of Goetz’s example

public class SyncExample {

 private static Object lockObject = new Object();

 private static class Thread1 extends Thread {

 … // on next slide

 }

 private static class Thread2 extends Thread {

 … // on next slide

 }

 public static void main(String[] args) {

 new Thread1().start();

 new Thread2().start();

 }

} C4 5

Thread classes in Goetz’s example

 private static class Thread1 extends Thread {

 public void run() {

 synchronized(lockObject) {

 x = y = 0;

 System.out.println(x);

 } } }

 private static class Thread2 extends Thread {

 public void run() {

 synchronized(lockObject) {

 x = y = 1;

 System.out.println(y);

 } } }

0

1

1

0
or

Expected
output:

• A thread cannot execute a
synchronized block until it
acquires the “lock” on the block’s
monitor.

• The lock is released when the
thread exits the block.

• A lock has at most one owner at
any time.

• A thread can own many locks.
C4 6

Unsynchronized threads

 private static class Thread1 extends Thread {

 public void run() {

 y = 0;

 x = y = 0;

 x = 0;

 System.out.println(x);

 }

 }

 private static class Thread2 extends Thread {

 public void run() {

 y = 1;

 x = y = 1;

 x = 1;

 System.out.println(y);

 }

 }

0

1

1

0
or

Expected
output:

or

1

1

or

0

0

C4 7

Synchronized Methods

 We can synchronize the body of a method using this as its lock:
public class Point {

 public void setXY(int x, int y) {

 synchronized (this) {

 this.x = x; this.y = y;

} } }

 This is a very common structure, so Java includes the “synchronized
method” as syntactic sugar.

 See http://en.wikipedia.org/wiki/Syntactic_sugar

 The following is equivalent, and is sweeter to read and write.
public class Point {

 public synchronized void setXY(int x, int y) {

 this.x = x; this.y = y;

} }

 Warning: sugar is very unhealthy if you don’t “eat your vegetables” too!

C4 8

http://en.wikipedia.org/wiki/Syntactic_sugar
http://en.wikipedia.org/wiki/Syntactic_sugar

public class SyncExample {

 public static class Thingie {

 private Date lastAccess;

 public synchronized void setLastAccess(Date date) {

 this.lastAccess = date;

 } }

 public static class MyThread extends Thread {

 private Thingie thingie;

 public MyThread(Thingie thingie) {

 this.thingie = thingie;

 }

 public void run() {

 thingie.setLastAccess(new Date());

 } }

 public static void main() {

 Thingie thingie1 = new Thingie(),

 thingie2 = new Thingie();

 new MyThread(thingie1).start();

 new MyThread(thingie2).start();

} }

Dangerous Sugar…

• setLastAccess() is a

synchronized method, so
each instance has its
own lock.

• This method is unsafe,
because the first worker
thread can acquire the
lock on thingie1 at

the same time the
second worker acquires a
lock on thingie2. C4 9

Goetz’s Advice on Synchronization

 “Because synchronization prevents multiple threads from executing
a block at once,

 it has performance implications, even on uniprocessor systems.

 “It is a good practice to

 use synchronization around the smallest possible block of code that
needs to be protected.

 “Access to local (stack-based) variables never need to be
protected,

 because they are only accessible from the owning thread.”

 In other words:

 if you’re concerned about performance, don’t use this syntactic sugar
(unless the whole method really needs to be “sweet” ;-).

C4 10

Most Java Classes are not Synchronized!

 Java has nice support for threads, but you have to be very careful
whenever multiple threads can access the same object.

 Goetz: “Because synchronization carries a small performance penalty,
 most general-purpose classes, like the Collection classes in
java.util, do not use synchronization internally.

 This means that classes like HashMap cannot be used from multiple threads
without additional synchronization.

 “You can use the Collections classes in a multithreaded
application
 by using synchronization every time you access a method in a shared

collection.

 For any given collection, you must synchronize on the same lock each time.

 A common choice of lock would be the collection object itself.

 “If the documentation for a class does not say that it is thread-safe,
then you must assume that it is not.”

C4 11

public class SimpleCache {

 private final Map cache = new HashMap();

 public Object load(String objectName) {

 // load the object somehow

 }

 public void clearCache() {

 synchronized(cache) {

 cache.clear();

 } }

 public Object getObject(String objectName) {

 synchronized(cache) {

 Object o = cache.get(objectName);

 if(o == null) {

 o = load(objectName);

 cache.put(objectName, o);

 } }

 return o;

 }

}

A Simple Thread-Safe Cache

• This code is
synchronized on a
single (final)
instance of a
cache object.

• The cache.clear()
method will never
run concurrently
with a cache.get()
or cache.put().

• Cache updates are
atomic: the
cache.get()…
cache.put()
sequence won’t
be interrupted.

C4 12

Sharing access to data summary (Goetz)

 “Because the timing of thread execution is nondeterministic, we
need to be careful to control a thread’s access to shared data.

 Otherwise, multiple concurrent threads could step on each other's
changes and result in corrupted data, or

 changes to shared data might not be made visible to other threads on a
timely basis.

 “By using synchronization to protect access to shared variables,

 we can ensure that threads interact with program variables in predictable
ways.

 “Every Java object can act as a lock, and synchronized blocks can
ensure that

 only one thread executes synchronized code protected by a given lock at
one time.”

C4 13

Learning Goals for Today

 Develop a stronger understanding of synchronization in Java.

 Be able to analyse codes with a small number of interactions between a

few threads, answering the question “what execution traces are possible?”

 Learn the syntax for synchronized methods

 What are the disadvantages of this “syntactic sugar”?

 Learn an important design pattern: using a final instance of a

collection to synchronize its methods.

 A simple example: a thread-safe cache

C4 14

