
COMPSCI 230 S2C 2015 
Software Design and Construction 

 Thread usage and synchronisation 
Lecture 3 of Theme C 

C3 1 



Lecture Plan for Weeks 7-9 

18/5 Introduction to Java threads 
Sikora pp. 157-9,  
Goetz1 pp. 1-6. 

21/5 A thread's life Goetz1 pp. 6-10. 

22/5 Where Java threads are used; synchronization Goetz1 pp. 10-15. 

25/5 Locking, blocking, mutex; visibility, consistency. Goetz1 pp. 15-20. 

28/5 Deadlock; performance; programming guidelines. Goetz1 pp. 20-24. 

29/5 Dealing with InterruptedException (intro) Goetz2 pp. 1-3. 

1/6 
Executors, tasks, concurrent collections, 
synchronizers. 

Bloch pp. 271-7. 

4/6 Concurrency in Swing Oracle 

5/6 Debugging Swing / Revision of this unit Potochkin 
C3 2 



Learning Goals for Today 
 Distinguish daemons from user threads 
 How are they different?  What are they doing in your JVM? 

 What are some of the common uses of multithreading in Java? 
 What is the “thread architecture” of AWT/Swing?  Which tasks belong on  

which thread?  What can happen if the EDT is handling tasks that belong 
on the model or controller thread?  

 What is a  TimerTask, an RMI, a servlet, and a JSP?  When might I want to 
use these libraries in Java? 

 Develop a working understanding of synchronization 
 What are locks?  Atomic operations?  Synchronized methods?  When 

should I use them?   
 What can happen if an application has defective synchronization? 

C3 3 



Daemon Threads 
 “We mentioned that a Java program exits when all of its threads have 

completed, but this is not exactly correct.  …”  (Goetz 2002) 
 The JVM has some threads which only terminate when the JVM is terminated – 

these are called daemons. 
 The JVM’s garbage collector is a daemon which does a good (but not perfect) job of 

“cleaning the sandbox” – by reclaiming memory that is consumed by objects that are 
no longer needed.  

 Subsequent applications or servlets need memory for their objects.  Garbage 
collection is a very important service!   

 “The Java Virtual Machine exits when the only threads running are all 
daemon threads.” (Java SE7, SE6, …) 
 Any thread can call Thread.setDaemon().  It then becomes a daemon! 
 The garbage collector is a daemon thread, created by the JVM. 
 User-created daemons are necessary if you want to configure a JVM as a server. 

 You’ll want a daemon to handle your console input. 
 Another daemon handles service requests, e.g. http://commons.apache.org/daemon/. 

 User-created daemons are dangerous, from a security perspective. 
 Subsequent applications or servlets don’t always get a “clean sandbox”! 
 

C3 4 



Servlets 
 Recent editions of Java EE have included the Servlet class.  History: 
 1999: Servlet 2.1 is part of J2EE 1.2 (the “Enterprise Edition” of Java) 
 2005: Servlet 2.5 is released for J2EE 1.4. 
 2009: Servlet 3.0 released for Java EE 6. 
 2013: Servlet 3.1 released for Java EE 7. 

 We won’t study Servlets carefully – this is an advanced topic.  Roughly… 
 A servlet is similar to a Java applet, but it is running on a remote JVM that is 

configured to be a server. 
 It’s commonly used with HTTP, in the javax.servlet.http package. 

1. A user’s browser issues an HTTP get request  
2. This request is handled by a “Servlet container” on the webserver.   
3. The container (on a user thread in the server’s JVM) invokes the init() method 

of the appropriate servlet (if the servlet is not running already). 
4. A running servlet invokes a service() method, which spawns a thread to handle 

this user’s request and any future requests from this user (during this session). 

C3 5 



Java Server Pages (JSP) 
 This was Sun Microsystem’s response to the Active Server Pages 

(ASP) technology of Microsoft. 
 ASP was an optional part of the Internet Information Services (IIS) for 

Windows NT 4.0, in 1998 (?). 
 IIS is a web server,  mail server,  and FTP server.  
 IIS was Microsoft’s answer, in1993 (?), to the NCSA HTTPd codebase… which Berners-

Lee developed in 1990, and which morphed into Apache. 

 Usually, JSP provides the “View” of a web-server’s MVC 
architecture, in which JavaBeans is the “Model” and Servlets (or 
some other framework) is the “Controller”. 
 I will not discuss JSP in any more detail, but I’d suggest you start with 

http://en.wikipedia.org/wiki/JavaServer_Pages if you want to learn more. 

 
C3 6 

http://en.wikipedia.org/wiki/JavaServer_Pages


The Model-View-Controller Design Pattern 
 You have seen the MVC pattern already, in Swing/AWT. 
 Note: the Model and View are not always clearly distinguished in a Swing app. 

 Goetz’ explanation of AWT: 
 “The AWT toolkit creates a single thread for handling UI events, and any event 

listeners called by AWT events execute in the AWT event thread.” 
 This thread is commonly called the EDT, or “Event dispatching thread”. 
 It is very important to run only short, non-blocking tasks on this thread. 
 A Java GUI will “feel” very unresponsive if its EDT is running tasks which take more 

than 30 milliseconds to run. 
 If an EDT runs a task that takes seconds to complete, the GUI will be “frozen” during 

this period. 
 “… you have to find a way for long-running tasks triggered by event listeners – 

such as checking spelling in a large document or searching a file system for a file 
– to run in a background thread so the UI doesn’t freeze while the task is 
running…” 
 “A good example of a framework for doing this is the SwingWorker class.” 

C3 7 



TimerTasks 
 The TimerTask framework is a convenient way to run tasks on a 

periodic schedule. 
 A thread can put itself to sleep, but it is more elegant (= more 

maintainable) to factor the scheduling code from the task-specfic code. 
 The TimerTask handles the scheduling – it can run a task every 100 msec, 

every 2000 msec, or at any other rate (which can be adjusted at runtime).  
 The syntax is straightforward, as seen on the next slide. 

C3 8 



Goetz1, p. 11: TimerTask example 
public static void main( String[] args ) {  
  Timer timer = new Timer();  
 
  final CalculatePrimes calculator = new CalculatePrimes();  
  calculator.start();  
  timer.schedule(  
    new TimerTask() {  
      public void run() {  
        calculator.finished = true; 
      } 
    },  
    TEN_SECONDS 
  ); 
}  

C3 9 



Threads can Work Cooperatively! 
 The simplest communication mechanism is a shared variable. 
 Threads must be very careful to avoid writing to the same variable at the same 

time. 
 If two threads write simultaneously, at most one of these writes will succeed. 
 In the worst case, both writes succeed partially (in different portions of a shared 

object), and the object has a corrupted/inconsistent value. 
 To avoid concurrent writing on an object, you can use a boolean (or other 

single-word primitive) variable.  You’ll need a protocol, for example: 
 The “master” thread sets flag=true when it is safe for the “slave” thread to write 

to the object. 
 The “slave” resets the flag (flag=false) after it has written to the object. 
 The “master” can write to the object safely when (flag == false) . 
 Warning: the flag must be volatile, otherwise the slave may never see a true 

value. 
 In modern computer systems, thousands (or millions) of memory locations are cached by 

each CPU chip.  Each core may have a separate cache.  
 A write to “memory” may not be visible to another core for a long time… 

C3 10 



Synchronized variables 
 If you have more than a few boolean flags in your code, or a complicated 

protocol for sharing, you’ll probably have bugs. 
 It’ll certainly be difficult to gain confidence that your code is bug-free! 
 Timing bugs can be very difficult to track down – they tend to be intermittent 

(i.e. not reliably exposed by a simple JUnit test), depending on difficult-to-control 
factors such as the CPU and memory workload of other processes on the 
system that is running your JVM. 

 Synchronized objects are a convenient way to ensure  
 Atomicity: No more than one thread is writing to the object at any given time. 

 Each write operation is completed (on all fields of the object) before any other write 
operation is allowed to start. 

 Visibility: The writes of one thread are exposed to other threads, the next time 
they read the object.   
 The volatile keyword assures visibility, but it does not assure atomicity. 

C3 11 



Monitors and Locks 
 Java synchronization is based on an underlying technology (supported by 

every modern operating system and CPU) called “locks”. 
 A lock is a volatile boolean variable with a very cleverly-designed protocol. 

 I will not discuss locking protocols in COMPSCI 230 – this is an advanced topic in 
parallel computing! 

 Any thread can “acquire a lock” if it asks for it… and if it is willing to wait… 
perhaps for a very long time… (perhaps forever! – this program defect is called 
“deadlock”) 
 It is very important for every thread to “release a lock” as soon as possible, otherwise 

other threads may be waiting a long time. 

 Every Java object has a lock – making it somewhat thread-safe (because only one 
thread can change it at a time).  We’ll discuss thread-safety later... 

 If you declare a block of code to be synchronized, it becomes a “monitor” – 
meaning that only one thread can be executing it at any given time. 
 

C3 12 



Learning Goals for Today 
 Distinguish daemons from user threads 
 How are they different?  What are they doing in your JVM? 

 What are some of the common uses of multithreading in Java? 
 What is the “thread architecture” of AWT/Swing?  Which tasks belong on  

which thread?  What can happen if the EDT is handling tasks that belong 
on the model or controller thread?  

 What is a  TimerTask, an RMI, a servlet, and a JSP?  When might I want to 
use these libraries in Java? 

 Develop a working understanding of synchronization 
 What are locks?  Atomic operations?  Synchronized methods?  When 

should I use them?   
 What can happen if an application has defective synchronization? 

C3 13 


	COMPSCI 230 S2C 2015�Software Design and Construction�
	Lecture Plan for Weeks 7-9
	Learning Goals for Today
	Daemon Threads
	Servlets
	Java Server Pages (JSP)
	The Model-View-Controller Design Pattern
	TimerTasks
	Goetz1, p. 11: TimerTask example
	Threads can Work Cooperatively!
	Synchronized variables
	Monitors and Locks
	Learning Goals for Today

