
COMPSCI 230 S2C 2015
Software Design and Construction

 Thread usage and synchronisation
Lecture 3 of Theme C

C3 1

Lecture Plan for Weeks 7-9

18/5 Introduction to Java threads
Sikora pp. 157-9,
Goetz1 pp. 1-6.

21/5 A thread's life Goetz1 pp. 6-10.

22/5 Where Java threads are used; synchronization Goetz1 pp. 10-15.

25/5 Locking, blocking, mutex; visibility, consistency. Goetz1 pp. 15-20.

28/5 Deadlock; performance; programming guidelines. Goetz1 pp. 20-24.

29/5 Dealing with InterruptedException (intro) Goetz2 pp. 1-3.

1/6
Executors, tasks, concurrent collections,
synchronizers.

Bloch pp. 271-7.

4/6 Concurrency in Swing Oracle

5/6 Debugging Swing / Revision of this unit Potochkin
C3 2

Learning Goals for Today
 Distinguish daemons from user threads
 How are they different? What are they doing in your JVM?

 What are some of the common uses of multithreading in Java?
 What is the “thread architecture” of AWT/Swing? Which tasks belong on

which thread? What can happen if the EDT is handling tasks that belong
on the model or controller thread?

 What is a TimerTask, an RMI, a servlet, and a JSP? When might I want to
use these libraries in Java?

 Develop a working understanding of synchronization
 What are locks? Atomic operations? Synchronized methods? When

should I use them?
 What can happen if an application has defective synchronization?

C3 3

Daemon Threads
 “We mentioned that a Java program exits when all of its threads have

completed, but this is not exactly correct. …” (Goetz 2002)
 The JVM has some threads which only terminate when the JVM is terminated –

these are called daemons.
 The JVM’s garbage collector is a daemon which does a good (but not perfect) job of

“cleaning the sandbox” – by reclaiming memory that is consumed by objects that are
no longer needed.

 Subsequent applications or servlets need memory for their objects. Garbage
collection is a very important service!

 “The Java Virtual Machine exits when the only threads running are all
daemon threads.” (Java SE7, SE6, …)
 Any thread can call Thread.setDaemon(). It then becomes a daemon!
 The garbage collector is a daemon thread, created by the JVM.
 User-created daemons are necessary if you want to configure a JVM as a server.

 You’ll want a daemon to handle your console input.
 Another daemon handles service requests, e.g. http://commons.apache.org/daemon/.

 User-created daemons are dangerous, from a security perspective.
 Subsequent applications or servlets don’t always get a “clean sandbox”!

C3 4

Servlets
 Recent editions of Java EE have included the Servlet class. History:
 1999: Servlet 2.1 is part of J2EE 1.2 (the “Enterprise Edition” of Java)
 2005: Servlet 2.5 is released for J2EE 1.4.
 2009: Servlet 3.0 released for Java EE 6.
 2013: Servlet 3.1 released for Java EE 7.

 We won’t study Servlets carefully – this is an advanced topic. Roughly…
 A servlet is similar to a Java applet, but it is running on a remote JVM that is

configured to be a server.
 It’s commonly used with HTTP, in the javax.servlet.http package.

1. A user’s browser issues an HTTP get request
2. This request is handled by a “Servlet container” on the webserver.
3. The container (on a user thread in the server’s JVM) invokes the init() method

of the appropriate servlet (if the servlet is not running already).
4. A running servlet invokes a service() method, which spawns a thread to handle

this user’s request and any future requests from this user (during this session).

C3 5

Java Server Pages (JSP)
 This was Sun Microsystem’s response to the Active Server Pages

(ASP) technology of Microsoft.
 ASP was an optional part of the Internet Information Services (IIS) for

Windows NT 4.0, in 1998 (?).
 IIS is a web server, mail server, and FTP server.
 IIS was Microsoft’s answer, in1993 (?), to the NCSA HTTPd codebase… which Berners-

Lee developed in 1990, and which morphed into Apache.

 Usually, JSP provides the “View” of a web-server’s MVC
architecture, in which JavaBeans is the “Model” and Servlets (or
some other framework) is the “Controller”.
 I will not discuss JSP in any more detail, but I’d suggest you start with

http://en.wikipedia.org/wiki/JavaServer_Pages if you want to learn more.

C3 6

http://en.wikipedia.org/wiki/JavaServer_Pages

The Model-View-Controller Design Pattern
 You have seen the MVC pattern already, in Swing/AWT.
 Note: the Model and View are not always clearly distinguished in a Swing app.

 Goetz’ explanation of AWT:
 “The AWT toolkit creates a single thread for handling UI events, and any event

listeners called by AWT events execute in the AWT event thread.”
 This thread is commonly called the EDT, or “Event dispatching thread”.
 It is very important to run only short, non-blocking tasks on this thread.
 A Java GUI will “feel” very unresponsive if its EDT is running tasks which take more

than 30 milliseconds to run.
 If an EDT runs a task that takes seconds to complete, the GUI will be “frozen” during

this period.
 “… you have to find a way for long-running tasks triggered by event listeners –

such as checking spelling in a large document or searching a file system for a file
– to run in a background thread so the UI doesn’t freeze while the task is
running…”
 “A good example of a framework for doing this is the SwingWorker class.”

C3 7

TimerTasks
 The TimerTask framework is a convenient way to run tasks on a

periodic schedule.
 A thread can put itself to sleep, but it is more elegant (= more

maintainable) to factor the scheduling code from the task-specfic code.
 The TimerTask handles the scheduling – it can run a task every 100 msec,

every 2000 msec, or at any other rate (which can be adjusted at runtime).
 The syntax is straightforward, as seen on the next slide.

C3 8

Goetz1, p. 11: TimerTask example
public static void main(String[] args) {
 Timer timer = new Timer();

 final CalculatePrimes calculator = new CalculatePrimes();
 calculator.start();
 timer.schedule(
 new TimerTask() {
 public void run() {
 calculator.finished = true;
 }
 },
 TEN_SECONDS
);
}

C3 9

Threads can Work Cooperatively!
 The simplest communication mechanism is a shared variable.
 Threads must be very careful to avoid writing to the same variable at the same

time.
 If two threads write simultaneously, at most one of these writes will succeed.
 In the worst case, both writes succeed partially (in different portions of a shared

object), and the object has a corrupted/inconsistent value.
 To avoid concurrent writing on an object, you can use a boolean (or other

single-word primitive) variable. You’ll need a protocol, for example:
 The “master” thread sets flag=true when it is safe for the “slave” thread to write

to the object.
 The “slave” resets the flag (flag=false) after it has written to the object.
 The “master” can write to the object safely when (flag == false) .
 Warning: the flag must be volatile, otherwise the slave may never see a true

value.
 In modern computer systems, thousands (or millions) of memory locations are cached by

each CPU chip. Each core may have a separate cache.
 A write to “memory” may not be visible to another core for a long time…

C3 10

Synchronized variables
 If you have more than a few boolean flags in your code, or a complicated

protocol for sharing, you’ll probably have bugs.
 It’ll certainly be difficult to gain confidence that your code is bug-free!
 Timing bugs can be very difficult to track down – they tend to be intermittent

(i.e. not reliably exposed by a simple JUnit test), depending on difficult-to-control
factors such as the CPU and memory workload of other processes on the
system that is running your JVM.

 Synchronized objects are a convenient way to ensure
 Atomicity: No more than one thread is writing to the object at any given time.

 Each write operation is completed (on all fields of the object) before any other write
operation is allowed to start.

 Visibility: The writes of one thread are exposed to other threads, the next time
they read the object.
 The volatile keyword assures visibility, but it does not assure atomicity.

C3 11

Monitors and Locks
 Java synchronization is based on an underlying technology (supported by

every modern operating system and CPU) called “locks”.
 A lock is a volatile boolean variable with a very cleverly-designed protocol.

 I will not discuss locking protocols in COMPSCI 230 – this is an advanced topic in
parallel computing!

 Any thread can “acquire a lock” if it asks for it… and if it is willing to wait…
perhaps for a very long time… (perhaps forever! – this program defect is called
“deadlock”)
 It is very important for every thread to “release a lock” as soon as possible, otherwise

other threads may be waiting a long time.

 Every Java object has a lock – making it somewhat thread-safe (because only one
thread can change it at a time). We’ll discuss thread-safety later...

 If you declare a block of code to be synchronized, it becomes a “monitor” –
meaning that only one thread can be executing it at any given time.

C3 12

Learning Goals for Today
 Distinguish daemons from user threads
 How are they different? What are they doing in your JVM?

 What are some of the common uses of multithreading in Java?
 What is the “thread architecture” of AWT/Swing? Which tasks belong on

which thread? What can happen if the EDT is handling tasks that belong
on the model or controller thread?

 What is a TimerTask, an RMI, a servlet, and a JSP? When might I want to
use these libraries in Java?

 Develop a working understanding of synchronization
 What are locks? Atomic operations? Synchronized methods? When

should I use them?
 What can happen if an application has defective synchronization?

C3 13

	COMPSCI 230 S2C 2015�Software Design and Construction�
	Lecture Plan for Weeks 7-9
	Learning Goals for Today
	Daemon Threads
	Servlets
	Java Server Pages (JSP)
	The Model-View-Controller Design Pattern
	TimerTasks
	Goetz1, p. 11: TimerTask example
	Threads can Work Cooperatively!
	Synchronized variables
	Monitors and Locks
	Learning Goals for Today

