
COMPSCI 230 S2C 2013
Software Design and Construction

A Thread’s Life
Lecture 2 of Theme C

Lecture Plan for Weeks 10-12

18/5 Introduction to Java threads
Sikora pp. 157-9,
Goetz1 pp. 1-6.

21/5 A thread's life Goetz1 pp. 6-10.

22/5 Where Java threads are used; synchronization Goetz1 pp. 10-15.

25/5 Locking, blocking, mutex; visibility, consistency. Goetz1 pp. 15-20.

28/5 Deadlock; performance; programming guidelines. Goetz1 pp. 20-24.

29/5 Dealing with InterruptedException (intro) Goetz2 pp. 1-3.

1/6
Executors, tasks, concurrent collections,
synchronizers.

Bloch pp. 271-7.

4/6 Concurrency in Swing Oracle

5/6 Debugging Swing / Revision of this unit Potochkin
C12

Learning Goals for Today
 Refine your understanding of threading:
 Make a careful distinction between the support of an operating system

(or a computer) for running a thread, and an instance of a Thread object
in the execution of a Java program.

 Understand the “lifecycle” of a thread
 Start to analyse a multi-threaded application, by identifying “where” in the

code the state of a thread can change state i.e. are created, become
runnable, start to wait, stop waiting, and are terminated.

C23

Ways to Create Threads

 When a Java program is launched, it has a single thread running
main().
 This is called the main thread.

 Any Java thread can create a new thread,
 By instantiating the Thread object, or
 By instantiating an object which extends Thread.

C24

Java Threads and OS-supported Threads
 The word “thread” is ambiguous.
 It may mean an object of type Thread: this is a Java data structure.

 One field in this structure is its run() method.
 It may mean a locus of control in a computer system.

 Goetz calls this the “actual thread”.
 The operating system may provide direct support for multiple threads per process.
 The JVM time-shares its OS-provided threads among its Thread objects. These objects

can “come to life” only when they are paired up with an OS-supported thread.

 By analogy:
 a Java thread object is like a soul, and
 an OS-supported thread is like a body,
 in an OS-defined universe where

 Souls are repeatedly incarnated in different bodies,
 Souls inhabit at most one body at any given time, and
 Bodies persist much longer than souls.

C25

The Life-Cycle of a Thread (at “Birth”)
 Instantiation (Thread.State = NEW):
 A new object t of type Thread is created.

 Analogy: a soul with no body. Its methods and initial state are its karma (षिन्चत कमर्).
 Any running thread can instantiate a new thread.

 Inspiration (RUNNABLE for the first time):
 Some running thread invokes t’s start() method.
 Now t is ready to run()… but it needs a body!
 Warning: if t’s inspiration occurs before its instantiation is complete, then it

might start to run() before all of its instance variables are initialised. This will
lead to very unpredictable – even dangerous – behaviour. The constructor
method for a Thread object should not invoke this.start()!

 First incarnation (actually running for the first time):
 The JVM has given it a “body” (an OS thread), so it starts to execute its run()

method.

C26

Life-Cycle of a Thread (after birth)
 After birth, Java threads are usually in one of the following states:
 RUNNABLE, BLOCKED, WAITING, and TIMED WAITING.

 There is a fifth state:
 TERMINATED.
 This state allows the garbage collector to (attempt to) reclaim any resources left

behind by a thread that has exited, and which are (apparently) inaccessible to any
non-TERMINATED thread.

 It also allows the programmer (through the JDI) to inspect the residue of a
thread, that is, the final state of its instance variables, and any resources
accessible through these variables.

 Thread states are adjusted by the JVM, in response to the thread’s
requests and also by external events.
 The Thread.getState() method will reveal a recent state of a thread –

 This is stale information (especially for this.Thread.getState()), so you should not rely
on it for scheduling decisions.

 It is very helpful for performance-monitoring and debugging.

C27

A State Diagram for Threads
 http://www.tutorialspoint.com/java/java_multithreading.htm : “The tutorialspoint is

an absolutely FREE
website which has
been created to
provide quality
education to the
people who are
enthusiastic to study
different technical and
non-technical subjects
…

“So far we have come up
with only few following
tutorials, but it's just a
beginning, and a big
library comprising of
various courses still needs
to be created.”

 This is a Petri net
model for the JVM’s
management of
threads.
 The start node is at

the top: any number of
tokens can be placed
here.

 The JVM moves a
token from one place
to the next, in
response to the events
described on the arcs.

C28

http://www.tutorialspoint.com/java/java_multithreading.htm

Death of a Thread
 It’s not a sad event… usually…
 Normal termination:
 A thread reaches the end of its run() method.

 Abnormal termination:
 A thread throws an Exception or Error that isn’t caught.
 Try to catch and handle all exceptions and errors!
 An abnormally terminated thread may be holding some resources that won’t be

“recycled” appropriately, e.g. file handles, issued by the operating system, which
may prevent other processes from accessing this file until the handle is released.

 Terrible termination (deprecated):
 Another thread calls stop(). (“Inherently unsafe… causes a thread to unlock all

of the monitors that it has locked… ” in SE1.4/Java 2)
 Another thread throws a ThreadDeath error (and this thread doesn’t catch it).

C29

Joining Threads
 This probably sounds like a marriage, but it’s something that

happens after a thread’s death!
 When a thread calls t.join(), it will block until t terminates.
 This is usually understood to be an assurance that whatever t was doing

in its run()is completed.

 But the actual situation is more complicated…
 Any external activity that t started (e.g. a disk-write) may not be completed by the

time t terminates.
 Any main-memory updates that t started (e.g. by writing to an unsynchronised and

non-volatile object) may not be completed by the time t terminates.
 Any updates that t completed (e.g. by writing to a synchronised or volatile object)

before it reached the end of its run()will be complete when t.join() returns.

C210

Another way to visualise threads
 This is a “swim lane” diagram.
 Threads start at the top.
 They move downwards, sending

messages to other lanes, as indicated
by arrows.

 A thread must wait for an incoming
arrow before proceeding any farther
down its path.

 Object.wait() will cause a thread to
wait until some other thread invokes
the notify() method of this object.

 Object.wait(timeout) allows a thread
to proceed without a notify(), after
the specified length of time.

Source:
http://harmony.apache.org/subcomponents/drlvm/
TM.html

C211

http://harmony.apache.org/subcomponents/drlvm/TM.html

Learning Goals for Today
 Refine your understanding of threading:
 Make a careful distinction between the support of an operating system

(or a computer) for running a thread, and an instance of a Thread object
in the execution of a Java program.

 Understand the “lifecycle” of a thread
 Start to analyse a multi-threaded application, by identifying “where” in the

code the state of a thread can change state i.e. are created, become
runnable, start to wait, stop waiting, and are terminated.

C212

	COMPSCI 230 S2C 2013�Software Design and Construction�
	Lecture Plan for Weeks 10-12
	Learning Goals for Today
	Ways to Create Threads
	Java Threads and OS-supported Threads
	The Life-Cycle of a Thread (at “Birth”)
	Life-Cycle of a Thread (after birth)
	A State Diagram for Threads
	Death of a Thread
	Joining Threads
	Another way to visualise threads
	Learning Goals for Today

