
COMPSCI 230 S2C 2013
Software Design and Construction

Introduction to Java Threads
Lecture 1 of Theme C

Lecture Plan for Weeks 10-12

18/5 Introduction to Java threads
Sikora pp. 157-9,
Goetz1 pp. 1-6.

21/5 A thread's life Goetz1 pp. 6-10.

22/5 Where Java threads are used; synchronization Goetz1 pp. 10-15.

25/5 Locking, blocking, mutex; visibility, consistency. Goetz1 pp. 15-20.

28/5 Deadlock; performance; programming guidelines. Goetz1 pp. 20-24.

29/5 Dealing with InterruptedException (intro) Goetz2 pp. 1-3.

1/6
Executors, tasks, concurrent collections,
synchronizers.

Bloch pp. 271-7.

4/6 Concurrency in Swing Oracle

5/6 Debugging Swing / Revision of this unit Potochkin
C12

Readings for this unit
 Strongly recommended!
1. Sikora

 Zbigniew Sikora, “Threads”, Chapter 10 of Java: Practical Guide for Programmers, Elsevier, 2003. Available
to registered students through our library:
http://www.sciencedirect.com.ezproxy.auckland.ac.nz/science/article/pii/B9781558609099500107

2. Goetz1
 Brian Goetz, “Introduction to Java threads”, IBM developerWorks, 26 Sep 2002, 27 pages. Available:

http://www.ibm.com/developerworks/java/tutorials/j-threads/j-threads-pdf.pdf

3. Goetz2
 Brian Goetz, “Java theory and Practice: Dealing with InterruptedException”, IBM developerWorks, 23

May 2006. Available: http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html

4. Bloch
 Joshua Bloch, “Concurrency: Prefer executors and tasks to threads, and Prefer concurrency utilities to

wait and notify”, Items 68 and 69 in Chapter 10 of Effective Java, Prentice Hall, 2nd Edition, 2008.
Available to registered students through our library:
http://proquestcombo.safaribooksonline.com.ezproxy.auckland.ac.nz/9780137150021

5. Oracle
 Oracle, “Lesson: Concurrency in Swing”, The Java Tutorials, 2013. Available:

http://docs.oracle.com/javase/tutorial/uiswing/concurrency/initial.html

6. Potochkin
 Alexander Potochkin, “Debugging Swing, the final summary”, 16 February 2006. Available:

https://weblogs.java.net/blog/alexfromsun/archive/2006/02/debugging_swing.html

C13

http://www.sciencedirect.com.ezproxy.auckland.ac.nz/science/article/pii/B9781558609099500107
http://www.ibm.com/developerworks/java/tutorials/j-threads/j-threads-pdf.pdf
http://www.ibm.com/developerworks/java/library/j-jtp05236/index.html
http://proquestcombo.safaribooksonline.com.ezproxy.auckland.ac.nz/9780137150021
http://docs.oracle.com/javase/tutorial/uiswing/concurrency/initial.html
https://weblogs.java.net/blog/alexfromsun/archive/2006/02/debugging_swing.html

Learning Goals for Today
 Develop an appropriate “mental model” for multithreaded

programs.
 Predict the outputs of a simple multithreaded program.

 Understand why multithreading is important – and difficult!
 List, and briefly discuss, some of the ways in which multithreading is used

in Java.
 Recognise some common “design patterns” for multithreaded

computations: Model-View-Controller, simulation with one-thread-per-
actor, foreground/background computations.

 Explain how a volatile variable differs from a non-volatile one: what
are its advantages and disadvantages?

C14

PrintNumbersThread
public class PrintNumbersThread extends Thread {
String name;
public PrintNumbersThread(String threadName) {
name = threadName;

}
public void run() {

for(int i=1; i<=2; i++) {
System.out.println(name + ": " + i);
try { Thread.sleep(500); }
catch(InterruptedException e) { }

}
}

}

C15

RunThreads
public class RunThreads {
public static void main(String args[]) {

PrintNumbersThread threadl;
PrintNumbersThread thread2;
threadl = new PrintNumbersThread("Threadl");
thread2 = new PrintNumbersThread("Thread2") ;
threadl.start () ;
thread2.start () ;

}
}

Expected
output:

Thread1: 1
Thread2: 1
Thread1: 2
Thread2: 2

Thread1: 1
Thread2: 1
Thread2: 2
Thread1: 2

or

Thread2: 1
Thread1: 1
Thread2: 2
Thread1: 2

Thread2: 1
Thread1: 2
Thread1: 1
Thread2: 2

Thread2: 1
Thread2: 2
Thread1: 1
Thread1: 2

Thread1: 1
Thread1: 2
Thread2: 1
Thread2: 2 C16

Tracing a Threaded Program
1. public class RunThreads {
2. public static void main(String args[]) {
3. PrintNumbersThread threadl;
4. PrintNumbersThread thread2;
5. threadl = new PrintNumbersThread("Threadl");
6. thread2 = new PrintNumbersThread("Thread2") ;
7. threadl.start () ;
8. thread2.start () ;
9. } }
10. public class PrintNumbersThread extends Thread {
11. public void run() {
12. for(int i=1; i<3; i++) {
13. System.out.println(name + ": " + i);
14. try { Thread.sleep(500); }
15. catch(InterruptedException e) { }
16. } } }

Note that the “parent thread” dies before its children.

Thread1: 1
Thread2: 1
Thread1: 2
Thread2: 2

C17

Tracing a Threaded Program (2)
1. public class RunThreads {
2. public static void main(String args[]) {
3. PrintNumbersThread threadl;
4. PrintNumbersThread thread2;
5. threadl = new PrintNumbersThread("Threadl");
6. thread2 = new PrintNumbersThread("Thread2") ;
7. threadl.start () ;
8. thread2.start () ;
9. } }
10. public class PrintNumbersThread extends Thread {
11. public void run() {
12. for(int i=1; i<3; i++) {
13. System.out.println(name + ": " + i);
14. try { Thread.sleep(500); }
15. catch(InterruptedException e) { }
16. } } }

Note that the threads are unsynchronised.

Thread1: 1
Thread2: 1
Thread2: 2
Thread1: 2

C18

CPUs, Cores, Processes, Threads
 Modern computers have many forms of parallelism.
 In hardware, there are
 One to four CPU chips, with
 Two to eight cores per CPU chip, and
 Hundreds of instructions in the execution pipeline of each core.

 In software, there are
 Hundreds of processes, where

 Each process is either running or waiting (for a core or an I/O device); and
 One to 20 (or more) threads of control per process.

 Each thread is either running or waiting.
 (There are actually four states in Java’s thread model, as we’ll see later.)

 If you are “hand-executing” a multithreaded program, you probably move
only one instruction-pointer at a time – this is like a single-core
execution.
 If you could move 8 pointers simultaneously, you’d be simulating an 8-core CPU.

C19

Context Switches
 When a core “switches” its context to start executing a different thread,

there is significant performance penalty:
 Very roughly: hundreds of “wasted” instruction-execution cycles.
 When you’re hand-executing a multi-threaded program, you have to ‘move your

hand’ to a different instruction-pointer before you can start to move it – this is
your context-switching time.

 Currently, most CPU cores run only one thread at a time.
 Ideally: number of runnable threads ≈ number of cores.
 Ideally: each thread runs for a long time (>> 1000 instructions) before it has to

“wait” for the output of another thread, or for an I/O device, or before it is
interrupted by the end of its time-slice.

 Currently, most operating systems have 100 to 1000 time-slices per second.
 If you have more than 100 threads in a single Java program on a laptop or

home computer, your threads will be waiting most of the time.
 If threads have to wait more than 30 msec, your GUI will probably be “jerky”

and “sluggish”.

C110

Parallelism is difficult, why use it?
 “Because it’s there”
 If you write single-threaded Java programs, and your competitors are multi-

threading efficiently, their programs will run 3x or even 8x faster because they’re
using CPU cores that you’re leaving idle.
 This is especially noticeable on “CPU-limited” computations e.g. image analysis.
 Note: modern PCs also have a GPU (Graphics Processor Unit), allowing very efficient

computer graphics without burdening the CPU.

 “Because it’s very convenient”
 When you’re writing GUIs, you generally use one thread to render the graphics

(the “View”), one or more threads to run the back-end computation (the
“Model”), and one thread (the “Controller”) to accept input from the user.

 If you single-thread a GUI, the controls will be non-responsive and the display
will “freeze” while you’re updating the Model (unless your model-updates take
30 milliseconds or less).

C111

Why use parallelism? (cont.)
 “Because it’s built into the JVM”
 The JVM has some daemon threads which run very helpful services, e.g.

its memory “garbage” collection.
 In earlier languages, you had to “clean up your own garbage” by explicitly de-

allocating objects.
 Java collects “garbage” objects automatically – and correctly almost-all of the time,

unless you terminate your threads improperly!

 JVM’s daemons are carefully designed to “stay out of your way”:
 running only when necessary,
 making useful progress during a single time-slice, and
 allowing your program’s threads to make progress (on other CPU cores) while

the service is actively running .

C112

Why use parallelism? (cont.)
 “Because it’s natural (in some programs)”
 When simulating a system with many actors, it’s natural to have one

thread per actor:
 the thread’s run() method describes “what this actor does”.

 For example, a traffic simulator might have one thread for each
automobile, bus, or truck that is on the roads being simulated.

 Warning: using “parallelism to fit your problem,” rather than “parallelism
to fit your hardware”, may lead to very inefficient computations.
 A desktop PC will not run 10000 threads efficiently, however it can efficiently

simulate 10000 automobiles in a roading network (if your simulator uses 100
threads).

C113

Why use parallelism? (cont.)
 “Because it’s natural (in some programs)”
 In a server program, a thread “worker” can be assigned to each client.

 The thread’s run() method delivers the service.

 In a program that handles asynchronous I/O devices (e.g. network
interfaces, disks, keyboards) a thread can be assigned to each device.
 The thread’s run() method handles the I/O stream for this device.
 If the thread executes a blocking read, e.g. SocketInputStream.read(), it will not run

again until the read succeeds. The JVM handles this wait very efficiently.

C114

Sharing Nicely
 If your threads don’t “talk” to each other, they can’t cooperate.
 If your threads do “talk”, they might confuse each other.
 When one thread is changing an object, the other threads must be

prevented from reading this object until the changes are complete.
 When one thread is accessing a method, other threads must wait their

turn (unless the method is “thread-safe” i.e. it can handle multiple
simultaneous accesses).

 There are several ways to share safely…

C115

Volatile variables
 If a variable, object, or field is declared as volatile, then
 It can be used for reliable communication between threads.

 Non-volatile variables, objects, and fields have unpredictable semantics, if
they are read & written by more than one thread.
 For example, if Thread1 and Thread2 are both executing the following:

int x = 1;
System.out.println(name + ": " + (x++));

 This is equivalent to executing:
int x = 1;
int t = x;
t = t + 1;
x = t;
System.out.println(name + ": " + x);

Thread1: 2
Thread2: 3

C116

Volatile variables (2)
 If a variable, object, or field is declared as volatile, then
 It can be used for reliable communication between threads.

 Non-volatile variables, objects, and fields have unpredictable semantics, if
they are read & written by more than one thread.
 For example, if Thread1 and Thread2 are both executing the following:

int x = 1;
System.out.println(name + ": " + (x++));

 This is equivalent to executing:
int x = 1;
int t = x;
t = t + 1;
x = t;
System.out.println(name + ": " + x);

Thread1: 2
Thread2: 3

Thread2: 2
Thread1: 3

or

C117

Volatile variables (3)
 If a variable, object, or field is declared as volatile, then
 It can be used for reliable communication between threads.

 Non-volatile variables, objects, and fields have unpredictable semantics, if
they are read & written by more than one thread.
 For example, if Thread1 and Thread2 are both executing the following:

int x = 1;
System.out.println(name + ": " + (x++));

 This is equivalent to executing:
int x = 1;
int t = x;
t = t + 1;
x = t;
System.out.println(name + ": " + x);

Thread1: 2
Thread2: 3

Thread2: 2
Thread1: 3

Thread2: 2
Thread1: 2

or

or

Thread1: 2
Thread2: 2 or

Thread1: 3
Thread2: 2 orThread2: 3

Thread1: 2
or

C118

Volatile variables (4)
 If a variable, object, or field is declared as volatile, then
 It can be used for reliable communication between threads.
 Semantics are predictable – if a thread reads the variable then writes it, the other

thread is blocked from reading until the newly-written value is available.
 Warning: you can cripple a multithreaded program by making all of its variables volatile.
 The JVM must always read volatiles from memory. Frequently-used non-volatile values

are retained in the CPU register file, which is *much* faster than main memory.
 For example, if Thread1 and Thread2 are both executing the following:

volatile int x = 1;
System.out.println(name + ": " + (x++));

 Thread1 and Thread2 always get different values!

Thread1: 2
Thread2: 3

Thread2: 2
Thread1: 3

or

Thread1: 3
Thread2: 2

Thread2: 3
Thread1: 2

or
C119

Learning Goals for Today
 Develop an appropriate “mental model” for multithreaded

programs.
 Predict the outputs of a simple multithreaded program.

 Understand why multithreading is important – and difficult!
 List, and briefly discuss, some of the ways in which multithreading is used

in Java.
 Recognise some common “design patterns” for multithreaded

computations: Model-View-Controller, simulation with one-thread-per-
actor, foreground/background computations.

 Explain how a volatile variable differs from a non-volatile one: what
are its advantages and disadvantages?

C120

	COMPSCI 230 S2C 2013�Software Design and Construction�
	Lecture Plan for Weeks 10-12
	Readings for this unit
	Learning Goals for Today
	PrintNumbersThread
	RunThreads
	Tracing a Threaded Program
	Tracing a Threaded Program (2)
	CPUs, Cores, Processes, Threads
	Context Switches
	Parallelism is difficult, why use it?
	Why use parallelism? (cont.)
	Why use parallelism? (cont.)
	Why use parallelism? (cont.)
	Sharing Nicely
	Volatile variables
	Volatile variables (2)
	Volatile variables (3)
	Volatile variables (4)
	Learning Goals for Today

