
CompSci 230
Software Design and Construction

 Software Quality S1 2015
Famous Failures

Lecture plan

Week 1: No class - Anzac Day
 What is software quality?
 Some key developer practices (version control, testing).

Week 2: Black box testing.
 White-box testing.
 Myers' testing principles.

Week 3: Traditional approach to testing (Waterfall).
 Agile approach to testing (XP).
 Famous failures.

2 2015 S1 Software Quality

Learning Goals for Today

 Schadenfreude (pleasure derived from the misfortunes of
others), with some lessons learned:
 Software professionals are trusted to “do the right thing” and to “do

no harm”. But: we all make mistakes, and some of us are unethical.
 Safety-critical software can fail catastrophically, even if it is carefully

tested.
 Software has complex failure modes, often with no single cause.

2015 S1 3 Software Quality

Case Study: “Doing a Rotorua”
 “… Leo Gao [who ran a filling station in Rotorua] and his girlfriend Kara were like

millions of couples around the world
 as they struggled to pay their bills and keep their business afloat.

 “Today [31 May 2009], they are the subject of an international hue and cry,
 leaving lawsuits, huffing and puffing private detectives and puzzled police on two continents in

their wake.
 And all because of a mark on a computer screen one fortieth of an inch across.

 “The desktop in question was in the Christchurch offices of Westpac, a leading New
Zealand bank.
 At its keyboard sat a woman with 30 years' experience who was about to perform a routine

task: formalising an overdraft facility… ” for $100,000.
 “Every digit, including the two zeroes for the cents, was put in.

 But one thing wasn't: the decimal point.
 And its absence gave Mr Gao and friend not $100,000, but 100 times that amount.

Source: The Independent, 31 May 2009.

 (Is the bank’s software partially to blame? How could it be improved?)

2015 S1 4 Software Quality

http://www.independent.co.uk/news/world/australasia/on-the-trail-of-the-10-million-dollar-runaways-1693387.html

Case study: Novopay
 “The widely publicised 'Novopay' project, a New Zealand-wide transition

from an onshore to a near-shore service provider (Datacom to Talent2),
was intended to
 update the payroll processing system of the Ministry of Education and so
 implement a new nationwide payroll system responsible for the payment of

about 110,000 teachers and education sector staff.
 “After various changes of direction and delays from its initiation in 2005,
 the project eventually went live in a 'big bang' cutover towards the end of 2012.

 “The cutover occurred with known outstanding issues, and the result
was that the bulk of the schools had to deal with
 underpayments,
 overpayments, or
 non-payments
 and a series of compounding errors.”

Source: Clear et al., The Novopay Project: The Dilemmas in Global Software Outsourcing, IITP Newsline, 17 Oct 2013.

 2015 S1 5 Software Quality

http://www.iitp.org.nz/newsletter/article/515?utm_source=email

Novopay: a failure of testing?
 Novopay’s test plan was carefully developed, see http://www.education.govt.nz/ministry-of-

education/information-releases/novopay-information-release/novopay-test-plans/

 5 June 2012: “the Ministry of Education has confidence in the Novopay project
to go live” http://www.education.govt.nz/assets/Documents/Ministry/Information-releases/Novopay-information-
release/EdReportFinalRecommendationV1.pdf

 June 2013: Ministerial Inquiry into the Novopay Project
 The impacts of the well-publicised Novopay failures have reverberated across New

Zealand.
 Every state and state-integrated school in the country has been affected.
 Dealing with the aftermath has distracted school staff, principals, boards of trustees,

the Ministry of Education and Ministers from other important concerns.
 This state of affairs and the wider disruptions that were caused were avoidable.
 It is clear to us that important lessons from the past, in particular

 those arising from the 1996 education payroll implementation difficulties and
 the INCIS experience in 2000,
 should have been learned, but were not.

2015 S1 6 Software Quality

http://www.education.govt.nz/ministry-of-education/information-releases/novopay-information-release/novopay-test-plans/
http://www.education.govt.nz/ministry-of-education/information-releases/novopay-information-release/novopay-test-plans/
http://www.education.govt.nz/assets/Documents/Ministry/Information-releases/Novopay-information-release/EdReportFinalRecommendationV1.pdf
http://www.education.govt.nz/assets/Documents/Ministry/Information-releases/Novopay-information-release/EdReportFinalRecommendationV1.pdf
http://www.education.govt.nz/assets/Documents/Ministry/Information-releases/Novopay-information-release/MIN130501InquiryReport.pdf

Ministerial Findings
 There were many factors that contributed to the Novopay failures.

It is our overall view that
 weaknesses in project governance and leadership
 allowed the service to go live with a number of significant risks which the

Ministry and its vendors were over-confident of managing.

 When these risks resulted in service issues Post-Go Live,
 the Ministry and its vendors were overwhelmed by their nature and scale.

 Over the course of the project,
 Talent2 had missed agreed milestones or deadlines, which eroded trust

and confidence in its ability to deliver.

 The nature of the service that the Ministry was seeking also
 diverged from the original proposition.

2015 S1 7 Software Quality

Novopay: A Critical Evaluation of Failure…
 “Setting the broader historical context to the [Novopay] project …

 the (now) Ministry of Education … had experienced a major and embarrassing payroll project failure some twenty years
earlier.

 The project was referred to as ‘the failed implementation of a centralised payroll system for the New Zealand Education
Department’ [Myers, 1995].

 “Symptoms included
 thousands of teachers who found they had not been paid correctly, and
 hundreds who did not get paid at all on 8 February (the first pay day of 1989);
 ‘relief teachers and some part-time teachers had not been paid by mid-April’ [Myers, 1995].

 “Yet by June 1989 the Education Department’s Director of Management Services ‘was able to announce
publicly that the…computerized payroll system was
 on target to meet its objective of saving the Government millions of dollars’ …
 Despite this positive perspective, ‘less than six months later the centralised payroll processing was scrapped by the

government’ [Myers, 1995].
 “… in 1996 history seemingly repeated itself for the Ministry…

 [Novopay] demonstrates some surprising similarities with the earlier projects… perhaps sadly illustrating that …
 generational knowledge in implementing software systems does not exceed a ten year timespan?”

 Clear’s analysis (in brief): the Novopay project encountered a similar set of “dilemmas, tensions or
contradictions” between stakeholders as did the two earlier projects.
 These problems were inadequately addressed, perhaps because they were unrecognised or discounted.

Source: Clear et al., “A critical evaluation of failure in a nearshore outsourcing project: What dilemma analysis can tell us”, 8th IEEE Conf. on Global Software Engineering, 2013, 179-187.

2015 S1 8 Software Quality

http://aut.researchgateway.ac.nz/handle/10292/5639

Tensions between Stakeholders
 “Given the mixed views of parties and interests in any large-scale project,

questions arise of:
 who is a stakeholder, and what influence does each have on the outcome?
 Whose concerns are most likely to be taken into account in the implementation

of a new system, and at what stage do they become salient?” [Clear, 2013]

 “Stakeholders of a computer system have been defined as:
 ‘People who will be affected in a significant way by or have material interests in

the nature and running of the new computerised system’

 Clear et al. [2013] identify 26 stakeholders in the 1989 payroll system:
 “Educators, Financial Organizations, Government Departments – National and

Regional, non-salaried educators, Payroll operational staff, Payroll units, Political,
The Press, School Principals and Regional Representatives, Senior Management at
National and Regional levels, Teachers’ Unions, and the Vendor.”

2015 S1 9 Software Quality

Top Ten Costliest Software Bugs
• Not a reliable source, but a fun list!

http://top-10-list.org/2010/05/03/ten-costliest-software-bugs/

1. Mars Climate Orbiter Crashes
 “The contractor who was given the responsibility of planning the

navigation system got the specifications from NASA but
 instead of using the metric system,
 he carried out measurements using imperial units.

 “What happened was that the space craft crashed into Mars and over
125 million dollars were lost.”

2. Ariane 5 Flight 501 (more on this later)

2015 S1 10 Software Quality

http://top-10-list.org/2010/05/03/ten-costliest-software-bugs/

Top Ten Costliest Software Bugs (cont.)
3. EDS Fails Child Support
 “About 6 years back, EDS created an IT system that was quite complex

and presented it to the CSA or the Child Support Agency in U.K… The
cost has been estimated at 1 billion dollars till date.”

 http://en.wikipedia.org/wiki/Electronic_Data_Systems:
 In 2004, EDS was criticised by the UK's National Audit Office for its work on IT

systems for the UK's Child Support Agency (CSA), which ran seriously over
budget causing problems which led to the resignation of the CSA's head, Doug
Smith on 2004-11-27.

 An internal EDS memo was leaked that admitted that the CSA's system was
"badly designed, badly tested and badly implemented".

Current score: Tech Errors 2, Mgmt Errors 1. Lowest score “wins” ;-)

2015 S1 11 Software Quality

http://en.wikipedia.org/wiki/Electronic_Data_Systems

Top Ten Costliest Software Bugs (cont.)

4. Soviet Gas Pipeline Explosion
 “A CIA operation to sabotage Soviet industry by duping Moscow into
 stealing booby-trapped software was spectacularly successful …

 “… the operation caused ‘the most monumental non-nuclear
explosion and fire ever seen from space’ in the summer of 1982.”

The Telegraph, 28 Feb 2004. Available:
http://www.telegraph.co.uk/news/worldnews/ northamerica/usa/1455559/CIA-
plot-led-to-huge-blast-in-Siberian-gas-pipeline.html

• I’ll let you “score” this one.
• Was it an ethical error, a management error, or a technical error for

the Soviets? Was it a success in all of these ways for the CIA?
2015 S1 12 Software Quality

http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html
http://www.telegraph.co.uk/news/worldnews/northamerica/usa/1455559/CIA-plot-led-to-huge-blast-in-Siberian-gas-pipeline.html

Ariane 5 analysis, by Sommerville
 The following slides are from a case study by Ian Sommerville,
 Author of Software Engineering, 9th Edition, Addison-Wesley, 2010.

 I have corrected a few typos, reformatted, added some colour (for
emphasis), and added a few comments (in red).

 His original slides are available for download:
 http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/Ariane5/index.html
 “All material provided on the SE9 website by Ian Sommerville is licensed under a Creative

Commons Attribution 2.5 UK: Scotland License. The materials provided here are for
educational purposes only and neither the author nor Pearson Education offers any warranties
or representations in respect of their fitness for a particular purpose.

2015 S1 13 Software Quality

http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/Ariane5/index.html
http://creativecommons.org/licenses/by/2.5/scotland/
http://creativecommons.org/licenses/by/2.5/scotland/

Ariane 5

 A European rocket designed to launch
commercial payloads (e.g.
communications satellites) into Earth
orbit

 Successor to the successful Ariane 4
launchers

 Ariane 5 can carry a heavier payload
than Ariane 4

 YouTube Video of the first launch (25
seconds). Longer video (2 min.)

2015 S1 14 Software Quality

http://www.youtube.com/watch?v=kYUrqdUyEpI
http://www.youtube.com/watch?v=gp_D8r-2hwk

The problem

 The attitude and trajectory of the rocket are measured by
a computer-based inertial reference system.
 This transmits commands to the engines to maintain attitude

and direction.
 The software failed and this system and the backup system shut

down.
 Diagnostic commands were transmitted to the engines

which interpreted them as real data
 and which swivelled to an extreme position resulting in

unforeseen stresses on the rocket.

2015 S1 15 Software Quality

Software failure
 Software failure occurred when
 an attempt to convert a 64-bit floating point number to a signed 16-bit

integer caused the number to overflow.

 There was no exception handler associated with the conversion
 so the system exception management facilities were invoked.
 These shut down the software.

 The backup software was a copy and
 behaved in exactly the same way.

2015 S1 16 Software Quality

Avoidable failure?
 The software that failed was reused from the Ariane 4 launch

vehicle.
 The computation that resulted in overflow was not used by Ariane 5.

 Decisions were made
 Not to remove the facility as this could introduce new faults;
 Not to test for overflow exceptions because the processor was heavily

loaded.
 For dependability reasons, it was thought desirable to have some spare processor

capacity.

2015 S1 17 Software Quality

Why not Ariane 4?
 ... Ariane 4 (a smaller vehicle) ... has a lower initial acceleration and

build up of horizontal velocity than Ariane 5.
 The value of the variable [that overflowed on Ariane 5] ... could

never reach a level [on Ariane 4] that caused overflow ...

2015 S1 18 Software Quality

Validation failure

 As the facility that failed was not required for Ariane 5,
 there was no requirement associated with it.

 As there was no associated requirement,
 there were no tests of that part of the software and hence no

possibility of discovering the problem.

 During system testing,
 simulators of the inertial reference system computers were

used.
 These did not generate the error as there was no requirement!

2015 S1 19 Software Quality

Review failure
 The design and code of all software should be reviewed for problems

during the development process
 Either

 The inertial reference system software was not reviewed because it had been used in
a previous version;

 The review failed to expose the problem or that the test coverage would not reveal
the problem;

 The review failed to appreciate the consequences of system shutdown during a
launch.

My notes:
• We could make a professional judgement, by reference to

the ACM guidelines on harm avoidance (on the next slide).

2015 S1 20 Software Quality

ACM Guidelines on 1.2 Harm Avoidance
 “… Well-intended actions, including those that accomplish assigned duties, may

lead to harm unexpectedly.
 “In such an event the responsible person or persons are obligated to undo or mitigate

the negative consequences as much as possible. …
 “To minimize the possibility of indirectly harming others, computing professionals must

minimize malfunctions by following generally accepted standards for system design and
testing. …

 “Furthermore, it is often necessary to assess the social consequences of systems to
project the likelihood of any serious harm to others. …

 “In the work environment the computing professional has the additional
obligation to report any signs of system dangers that might result in serious
personal or social damage.
 “If one's superiors do not act to curtail or mitigate such dangers, it may be necessary

to ‘blow the whistle’ to help correct the problem or reduce the risk.
 “However, capricious or misguided reporting of violations can, itself, be harmful.

Before reporting violations, all relevant aspects of the incident must be thoroughly
assessed. In particular, the assessment of risk and responsibility must be credible.

 “It is suggested that advice be sought from other computing professionals. See
principle 2.5 regarding thorough evaluations.”

2015 S1 21 Software Quality

http://www.acm.org/about/code-of-ethics/

Lessons learned (according to Somerville)
 Don’t run software in critical systems unless it is actually needed.

 As well as testing for what the system should do, you may also have

to test for what the system should not do.

 Do not have a default exception handling response which is system
shut-down in systems that have no fail-safe state.

Good idea… but I think it was not standard practice
until it was learned the “hard way” on Ariane 5.

Yes, of course… this was well-known, but … how can
we test for all the things a system “should not do”?

Obvious in retrospect… but I think it was not standard
practice until it was learned the “hard way” on Ariane 5.
It is now standard practice to insist that every safety-
critical system has a fail-safe state that it will reliably
reach. Anyway: the Ariane 5 rocket failed, but this did
not cause the mission control system to fail, and the
rocket was destroyed without harming anyone!

2015 S1 22 Software Quality

Lessons learned (cont.)
 In critical computations, always return best effort values even if the

absolutely correct values cannot be computed.

 Wherever possible, use real equipment and not simulations.

 Improve the review process to include external participants and
review all assumptions made in the code.

Good idea! It is now routine, in critical design, to review
assumptions “before it is too late”.

Good idea… but I think it was not standard practice
until it was learned the “hard way” on Ariane 5.

Yes, of course… but eventually you have to “go live” on
a test launch!

Process improvement (to avoid making the same mistake again) is – I
think – a very appropriate response when it’s impossible to “undo” a
mistake. Do you agree?

2015 S1 23 Software Quality

Avoidable failure
 The designers of Ariane 5 made a critical and elementary error.
 They designed a system where a single component failure could

cause the entire system to fail.
 As a general rule, critical systems should always be designed to

avoid a single point of failure.

This is very harsh criticism from Sommerville. Do you think it is justified?

2015 S1 24 Software Quality

Therac-25
 “Between June 1985 and January 1987, a computer-controlled radiation

therapy machine, called the Therac-25, massively overdosed six people.
…
 Error messages provided to the operator were cryptic, and some merely

consisted of the word MALFUNCTION followed by a number from 1 to 64
denoting an analog/digial channel number. …

 “An operator involved in one of the accidents testified that she had
become insensitive to machine malfunctions.
 “Malfunction messages were commonplace and most did not involve patient

safety. …
 “The operator further testified that during instruction she had been taught that

there were ‘so many safety mechanisms’ that she understood it was virtually
impossible to overdose a patient.”

Source: N. Leveson, “Medical Devices: The Therac-25”, excerpt from her book on Safeware: System Safety and
Computers, Addison-Wesley, 1995. Available http://sunnyday.mit.edu/papers/therac.pdf.

2015 S1 25 Software Quality

http://sunnyday.mit.edu/papers/therac.pdf

Causal Factors of the Therac-25 Accidents
 Overconfidence in software

 The first safety analysis on the Therac-25 did not include software – although nearly all
responsibility for safety rested on it.

 Confusing reliability with safety
 The software was highly reliable. It worked tens of thousands of times before overdosing

anyone.
 Lack of defensive design

 The software did not contain self-checks or other error-detection and error-handling
features…

 Failure to eliminate root causes
 … the tendency to believe that the cause of an accident had been determined (e.g. a

microswitch failure …) without adequate evidence…
 Complacency
 Unrealistic risk assessments
 [Leveson identifies five other causal factors!]
Source: N. Leveson, “Medical Devices: The Therac-25”, excerpt from her book on Safeware: System
Safety and Computers, Addison-Wesley, 1995. Available http://sunnyday.mit.edu/papers/therac.pdf.

2015 S1 26 Software Quality

http://sunnyday.mit.edu/papers/therac.pdf

Learning Goals for Today

 Schadenfreude (pleasure derived from the misfortunes of
others), with some lessons learned:
 Software professionals are trusted to “do the right thing” and to “do

no harm”. But: we all make mistakes, and some of us are unethical.
 Safety-critical software can fail catastrophically, even if it is carefully

tested.
 Software has complex failure modes, often with no single cause.

2015 S1 27 Software Quality

	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning Goals for Today
	Case Study: “Doing a Rotorua”
	Case study: Novopay
	Novopay: a failure of testing?
	Ministerial Findings
	Novopay: A Critical Evaluation of Failure…
	Tensions between Stakeholders
	Top Ten Costliest Software Bugs
	Top Ten Costliest Software Bugs (cont.)
	Top Ten Costliest Software Bugs (cont.)
	Ariane 5 analysis, by Sommerville
	Ariane 5
	The problem
	Software failure
	Avoidable failure?
	Why not Ariane 4?
	Validation failure
	Review failure
	ACM Guidelines on 1.2 Harm Avoidance
	Lessons learned (according to Somerville)
	Lessons learned (cont.)
	Avoidable failure
	Therac-25
	Causal Factors of the Therac-25 Accidents
	Learning Goals for Today

