
CompSci 230 
Software Design and Construction 

 Software Quality 2015S1 
Agile approach to testing (XP) 



Lecture plan 
 

Week 1:   No class - Anzac Day 
  What is software quality? 
  Some key developer practices (version control, testing). 
   
Week 2:  Black box testing.  
  White-box testing.  
  Myers' testing principles. 
   
Week 3:  Traditional approach to testing (Waterfall).  
  Agile approach to testing (XP). 
  Famous failures. 
 

2 

Myers Ch. 9, pp. 179-187 
www.agilemanifesto.org 

 
 
 
 

2015 S1 Software Quality 



Learning Goals for Today 
 Have a working understanding of Extreme Programming (XP). 
 Given a description of a software development process, discuss its 

conformance with XP principles. 
 What are the major arguments for XP?  Against it? 
 Name, and briefly describe, some of the 12 core practices of XP. 

 

 Have a working understanding of testing in XP. 
 Given a description of a software testing process, discuss its conformance 

with XT. 
 What are the major arguments for XT?  Against it? 
 Given a development scenario, discuss whether XT could be applied.  If it 

is applicable, what benefits might be expected from its use? 
 

3 2015 S1 Software Quality 



Extreme Programming (XP) 
 Last lesson, we introduced the agile methodologies as a reaction to 

traditional software development approaches. 
 

 Today, we will focus on one of these, Extreme Programming (XP). 
 In particular, we will discuss testing in an XP context. 

 

4 2015 S1 Software Quality 



A Brief History of XP 
 “XP was invented in 1996,  
 when Kent Beck, a software developer,  
 was called in by an American car maker, Chrysler,  
 to rescue a project which had proved so frustrating that it had been 

scrapped.  

 “As Mr Beck worked on this benighted venture,  
 known as Chrysler Comprehensive Compensation (C3), 
 he formulated a set of directions for keeping code ‘elegantly written’.  

 “The C3 system now provides  
 correct monthly payroll information for more than 86,000 employees.  
 Its success is ascribed to Mr Beck's golden rules.” [The Economist, 9 December 2000] 

 
5 2015 S1 Software Quality 



 XP Values (in1998) 
 “Extreme Programming rests on the values of simplicity, 

communication, testing, and aggressiveness.” 
 “Extreme programmers do the simplest thing that could possibly work.” 
 “Extreme programmers leave the system in the simplest condition 

possible.” 
 “Having built these simple objects, we refactor our code to eliminate any 

redundancy and ugliness in the code just installed.” 

 “Customers are part of the team throughout development.” 
 “We graph functional test scores every day, showing green for correct 

results and red for incorrect.” 
 “There’s no waiting for features needed in some other class, so we move 

quickly.” [The C3 Team, “Chrysler Goes to ‘Extremes’, Distributed Computing, Oct 1998, pp. 24-8] 

 
6 2015 S1 Software Quality 



The Purpose of XP (according to Myers) 
 “The purpose of the XP development methodology is  
 to create quality programs in short time frames.” 

 “Classical software processes still work,  
 but often take too much time,  
 which equates to lost income  
 in the competitive arena of software development.” 

7 2015 S1 Software Quality 



Basics of XP (according to Myers) 
 XP focuses on implementing simple designs, 
 Communicating between developers and customers, 
 Constantly testing your code base, 
 Refactoring to accommodate specification changes, and 
 Seeking customer feedback.” 

 ? Is this an accurate description of XP?  In their 1998 article, the C3 team 
described the purpose of refactoring differently: 
 “Having built these simple objects, we refactor our code to eliminate any 

redundancy and ugliness in the code just installed.” 
 XP is a general approach to software development, not a specific process  
 Kent Beck (and other “gurus” of XP) have refined their ideas about XP, over the 

past 16 years. 
 ? When was it decided that XP is a ‘general approach’ – I’m sure this was not the case 

at the start? 

8 2015 S1 Software Quality 

http://laerer.rhs.dk/vibekes/4%20sem-sym/articels/TheNewXP.pdf 

 

http://laerer.rhs.dk/vibekes/4 sem-sym/articels/TheNewXP.pdf


Strengths of XP (Myers) 
 “XP tends to work well for  
 small to medium-size development efforts  
 in environments that have frequent specification changes and  
 where near-instant communication is possible.” 

 “XP… avoids the large-scale project syndrome, in which the 
customer and the programming team meet to design every detail 
of the application before coding begins.” 
 “Project managers know this approach has its drawbacks because 

customer specifications and requirements constantly change to reflect 
new business rules or marketplace conditions.” 

 Myers doesn’t point out that customers rarely know “what they want” 
until they see a prototype of what is possible – then they can discuss 
what they like, what they don’t like, and what new features they want. 

9 2015 S1 Software Quality 



Strengths of XP (cont.) 
 Myers:  “the XP methodology … avoids coding unneeded 

functionality.” 
 “If your customer thinks that the feature is needed but not required, it 

generally is left out of the release.” 
 “Thus, you can focus on the task at hand, adding value to a software 

product.” 
 (This is probably what the C3 team meant by “aggressiveness” in their 

1998 article.) 

10 2015 S1 Software Quality 



XP in a Nutshell (Myers) 
 Four basic concepts: 
 Listening to the customer and other programmers 
 Collaborating with the customer to develop the application’s specification 

and test cases. 
 Coding with a programming partner. 
 Testing the code base. 

11 2015 S1 Software Quality 



The Importance of Planning in XP (Myers) 
 “The planning phase in XP differs from that in traditional 

development models, which often combine requirements gathering 
and application design.” 

 “Planning in XP focuses on identifying your customer’s application 
requirements and designing user stories (or case stories) that meet 
them.” 
 “You gain a significant insight into the application’s purpose and 

requirements when creating user stories.” 
 “In addition, the customer employs the user stories when performing 

acceptance tests at the end of a release cycle.” 
 “Finally, an intangible benefit of the planning phase is that the customer 

gains ownership and confidence in the application by heavily participating 
in it.” 

12 2015 S1 Software Quality 



Examples of User Stories 
 As a user, I want to search for my customers by their first and last 

names. 
  As a non-administrative user, I want to modify my own schedules 

but not the schedules of other users. 
  As a mobile application tester, I want to test my test cases and 

report results to my management. 
  Starting Application:  The application begins by bringing up the last 

document the user was working with. 
  As a user closing the application, I want to be prompted to save if I 

have made any change in my data since the last save. 
[Source: http://en.wikipedia.org/wiki/User_story]  

 
13 2015 S1 Software Quality 

http://en.wikipedia.org/wiki/User_story


Use Case Diagrams 
 XP uses informal, brief stories. 
 An alternative style of informal specification is the Use Case 

Diagram (as discussed earlier this term). 
 Use-case diagrams were invented by Ivar Jacobsen in 1986 for use in his 

“Objectory Process”. 

14 2015 S1 Software Quality 



12 Original Practices of XP 
1. Planning and requirements (“user stories”; customer chooses features) 
2. Small, incremental releases 
3. System metaphors  
4. Simple designs 
5. Continuous testing 
6. Refactoring 
7. Pair programming 
8. Collective ownership of the code 
9. Continuous integration (every day) 
10. 40-hour work week 
11. On-site customer (“you and your programming team have unlimited access to the 

customer so you may resolve questions quickly and decisively”) 
12. Coding standards (“all code should look the same”) 

 
15 2015 S1 Software Quality 



Testing is Central in XP 
 “The XP model relies heavily on unit and acceptance testing of 

modules. 
 The philosophy is “extreme”.  
 Maximise the main defect-finding activities, stop other testing activities. 
 ? Do you agree that these are the main testing activities? What about system testing? load testing?  

Do these become part of acceptance testing? Or is acceptance testing only apply to functionality? If 
the former, doesn’t this put a huge load on the customer? 

 
 

16 2015 S1 Software Quality 



Testing is Central in XP 
 “The XP model relies heavily on unit and acceptance testing of 

modules. 
 “In general, you must run unit tests for every incremental code 

change, 
 no matter how small, 
 to ensure that the code base still meets its specification.” 

 
 

17 2015 S1 Software Quality 



Testing is Central in XP 
 “In fact, testing is of such importance in XP that the process 

requires that you 
 create the unit (module) and acceptance tests first, 
 then create your code base. 
 this form of testing is called, appropriately, Extreme Testing (XT).” 
 ? Isn’t a more common name “Test Driven Development” (TDD) ? 
 ? Did Kent Beck really invent the idea ?  
 ? Was TDD originally part of XP ? 

18 2015 S1 Software Quality 

http://www.drdobbs.com/extreme-testing/184414994 
http://arialdomartini.wordpress.com/2012/07/20/you-wont-believe-how-old-tdd-is/ 
 

http://www.drdobbs.com/extreme-testing/184414994
http://arialdomartini.wordpress.com/2012/07/20/you-wont-believe-how-old-tdd-is/


Extreme Unit Testing 
 According to Myers, XUT has two “simple rules”: 
1. All code modules must have unit tests before coding begins 
2. All code modules must pass unit tests before being released into 

production. 
 Nothing new here, except the insistence on writing unit tests before 

coding. 
 Wow, that’s a disciplined approach!  Would you do this willingly, or would you be 

tempted to “code early, on the sly” (when you think your manager isn’t looking)? 
 Note: if you’re writing executable tests, then I’d say you’re coding.  

 You can write assertions in Java or Junit.   
 You might be programming in a language with goal-directed evaluation (e.g. Icon): 

specify the outcome (in restricted settings) and let the computer figure it out! 
 In a futuristic/AI development scenario, you could be “programming by example” i.e. 

goal-directed programming without any sharply-defined restrictions. 

2015 S1 19 Software Quality 



Benefits of “Test-First Coding” (Myers) 
1. You gain confidence that your code will meet its specification. 
2. You express the end result of your code before you start coding. 
 ? Why does Myers think this is a benefit?  

3. You better understand the application’s specification and 
requirements. 

4. You may initially implement simple designs and confidently 
refactor the code later to improve performance [and elegance – 
important for maintainability] without worrying about breaking the 
specification. 

 ? OK, so I shouldn’t “worry” about the specification when I refactor, but don’t I 
have to consider it? 

2015 S1 20 Software Quality 



The “Shining Point” of XP 
 “The practice of creating unit tests first is the shining point of the XP methodology, as it forces 

you to understand the specification to resolve ambiguities before you begin coding.” 
 ?Really? What keeps me from writing unit tests hastily, without resolving ambiguities? 
 

 Myers’ reasoning isn’t clear to me but YMMV (your mileage may vary ;-)  
 “… you may not fully understand the acceptable data types and boundaries for the input values of an 

application if you start coding first. 
 “So how can you write a unit test to perform boundary analysis without understanding the acceptable 

inputs? 
 “Can the application accept only numbers, only characters, or both? 
 “If you create the unit tests first, you must understand the specification.” 
 

 My translation: “If you create a robust set of black-box tests, this demonstrates that you 
understand the specification.  Only after demonstrating this, should you start to code.” (I’m in the 
“quality school” of testing) 
 So… there must be some quality-control on the unit tests.   
 What’s the main activity in this quality control?  (We’ll see Kent Beck’s answer later.) 

2015 S1 21 Software Quality 



The importance of automated testing 
 “Manually running unit tests, even for the smallest application, can be a daunting task. 

 
 “As the application grows, you may generate hundreds or thousands of unit tests. 

 
 “Therefore you typically used an automated testing suite to ease the burden of 

constantly running unit tests.” 
 

 Main functions of an automated testing suite: 
 Script the tests, then run all or part of them 
 Create reports and classify the bugs: may be useful in future development 
 

 The “testing code base” becomes as valuable as the software application itself, so it 
should be 
 stored in a code repository,  
 with adequate backups & security 

2015 S1 22 Software Quality 



Extreme acceptance testing (XAT) 
 Purpose of XAT: to determine, with a minimum of effort and time, whether the 

application is acceptable to the customer. 
 
 Is XP unsuitable for use whenever there is more than one customer? 
 Some software development methodologies (as taught in information-systems 

departments) acknowledge that  
 stakeholders are often deeply conflicted about requirements on new IT systems, and 
 IT system specifications are “levers of change” in an organisation, implying that 
 Acceptance-testing decisions by an employee may be “over-ruled” by management. 

 
 Let’s assume the XAT team has a fully-empowered and well-informed 

“customer” at their disposal!  Then… 
 
 “… customers, not you or your programming partners, conduct the acceptance 

tests.” 
 “In this manner, customers provide the unbiased verification that the application 

meets their needs.” 

2015 S1 23 Software Quality 



Relation of XAT to user stories 
 “Customers create the acceptance tests from user stories.” 
 “The ratio of user stories to acceptance tests is usually one to many. 
 “That is, more than one acceptance test may be needed for each user 

story.” 
 ? This sounds like quite a burden on the customer! I wonder how many XP 

projects are actually doing this? 

2015 S1 24 Software Quality 



Automation of XAT? 
 “Acceptance tests in XT may or may not be automated. 

 
 “For example, an unautomated test is required when the customer must 

validate that a user-input screen meets its specification with respect to 
color and screen layout.” 
 Hmmm… a layout & colour test could be fully automated, with some image-

processing techniques, if the specification is very precise.  However a spec that’s 
a one-line “user story” is will require some subjective measurement of attributes 
such as “easy to use”, “legible”, “attractive”. 

 
 “An example of an automated test is when the application must calculate 

some payroll values using data input via some data source such as a flat 
file to simulate production values.” 

2015 S1 25 Software Quality 



XAT: a Validation or a Verification? 
 In XAT, as described by Myers, the customer is asked whether or not the 

system produces valid output. 
 System validation: commonly defined as “Are we building the right thing for you?” 
 System verification: “Are we building it right?”, that is, does the system meet its 

specifications? 
 Requirements validation: “Do the requirements specify a system that you, the 

customer, would want to use – assuming we can build it?” 
 Requirements verification: “Do the requirements make sense?”, that is, could our 

dev team understand them well enough to implement them, or are they too 
vague, contradictory, or infeasible? 

 
 Because customers aren’t allowed to change their stories during an 

acceptance test, I’d say XAT is a system verification. 
 Any new stories should be prioritised into the release schedule. 
 My question: If there are no new stories during XAT, is the current system valid? 

 

2015 S1 26 Software Quality 



The Peril of Changing Requirements 
 If previously-accepted requirements are changed, the development may 

make little or no “forward progress” 
 Developers must revise unit tests, and then recode the units, to conform to the 

new requirements 
 

 Trish Koo (http://trishkhoo.com/2009/01/extreme-testing-xt/):  
 “Whenever requirements change, the developers adapt fairly easily but the 

testers are still gritting their teeth because they have to update a huge backlog of 
test cases for regression testing.” 
 

 If previously-accepted requirements are “cast in concrete”, then the 
project may fail as soon as the “mistake” is discovered. 
 In my (very limited) experience, end-users rarely know what they want until they 

have fiddled with a prototype.  Then the stories change rapidly! 

2015 S1 27 Software Quality 

http://trishkhoo.com/2009/01/extreme-testing-xt/


Software updates are hazardous 
 When software is in the field, it is very hazardous to change any of its features.   

 This is true even when a feature is reported as a "bug" by some stakeholders, and the QA 
team agrees that it is a bug.   

 Other stakeholders may have become accustomed to the buggy behaviour, and are likely to 
be confused, annoyed, or even angered when it is "fixed".   

 
 In a sports analogy, this hazard is called  

 "changing the rules after the game has started". 
 

 My advice: unless there's a major security risk, a major legal risk, or a major 
dissatisfaction among stakeholders with a software product,  
 User-visible behaviour ("look and feel") should remain constant.   
 Even during a major version-step, feature-change should be minimised. 
 I say this because I believe most users don’t want to learn new features, adjust their 

behaviour,  or modify their expectations… but … if a change is “really cool” then users will 
happily “invest” significant time and money in order to gain a novel experience! 

 

2015 S1 28 Software Quality 



Managing stakeholder conflicts in XAT 
 XAT (and XP) has no explicit process for managing stakeholder conflict. 

 XP assumes the devteam will have good access to an “on-site customer” 
 To learn more, see http://agilemodeling.com/essays/activeStakeholderParticipation.htm. 

 Most XP projects have a primary stakeholder: the organisation that commissions the software. 
 But see Grünbacher & Hofer, “Complementing XP with Requirements Negotiation”, in Proc. 3rd Int’l 

Conf. on eXtreme Programming and Agile Processes in Software Eng’g, 2002, available 
http://cf.agilealliance.org/articles/system/article/file/909/file.pdf. 

 
 Who could be a valid “on-site customer” for an XAT on 
createAppletImageIcon()? 
 If they’re a professor, they’ll have a hard time understanding the student point of view.   
 If they’re a student, they’ll have a hard time understanding the prof’s point of view.,  
 If they are a prospective future user, they might have an entirely different point of view. 
 

 The IBM Rational Unified Process, and many other “IS-style” development processes, 
treat stakeholder conflict as a first-order concern. 
 I think there can be no “magic bullet”: stakeholder conflict is a fundamental problem in 

software development. 

2015 S1 29 Software Quality 

http://agilemodeling.com/essays/activeStakeholderParticipation.htm
http://cf.agilealliance.org/articles/system/article/file/909/file.pdf


Myers’s Summative Evaluation of XP 
 “Although glamorous, XP is not for every project or every organization.” 

 
 “Proponents of XP [claim] that the chances of successful application 

development increase dramatically” 
 

 “Detractors say that because XP is a process, you must do all or nothing.  If 
you skip a practice, then … your program quality may suffer.” 
 

 “[D]etractors claim that the cost of changing a program in the future to add 
more features is more than the cost of initially anticipating and coding the 
requirement.” 
 

 “[S]ome programmers find working in pairs very cumbersome and invasive, 
therefore they do not embrace the XP methodology.” 
 

30 2015 S1 Software Quality 



Is C3 a Success Story for XP? 
 “The original estimate done by the C3 team in March 1996 was that the project would be ready to ship 

in about a year.  
 It launched in about a year.  
 I think it was about two months later than was wanted owing to a late understanding of what the Customer 

needed for testing. 
 “The launch was considered a success by everyone.  
 “Subsequent launches of additional pay populations were wanted by top management within a year.  

 The team thought that was possible… After two? more years the next group was ready to ship in the team's 
opinion but something always got in the way.  

 It wasn't quite like the 90% done syndrome, but there was always another requirement that just had to be done.  
 Communication up and down the chain of command was broken; every manager but one on both the IT side and 

Finance side was replaced or moved to a new position.  
 “Finally the project was terminated.  

 At this writing [2002], C3 is no longer paying any employees, though it did so until the end of 2000.  
 “Was it a process failure?  It's hard to say.  
 “The things that XP deals with were all chugging along, but 

 it was as if the project had become uninteresting to the high-level stakeholders, and  
 they forgot about it and then one day remembered and turned it off.” 

Source: http://c2.com/cgi/wiki?ChryslerComprehensiveCompensation, retrieved 15 October 2013.  

31 2015 S1 Software Quality 

http://c2.com/cgi/wiki?ChryslerComprehensiveCompensation


Is C3 a Success Story for XP? 
 C3 was started in January 1995 with a 26-man team.  

 After a year and a half, the project had hit a brick wall ...  
 Reportedly, the development team had lost sight of its goal of printing checks.  
 Also, no good way of testing was in place.  

 In March 1996, Kent Beck took over the project. 
 In talking one-on-one with each team member, he had [basically] laid out the ground rules for extreme 

programming (XP), which he then applied to C3. 
 Then he announced that in the short time of three weeks they would be printing out their first 

check.  
 The team was surprised at the announcement, since they had just spent eighteen months and not printed 

anything.  
 They made that goal.  
 Next, it was onto the other 86,999 checks that needed to be printed.  
 By August 1998, C3 was paying about 10,000 people.  

 The project was cancelled in January/February 2000 [because]  
 it was only paying one-third of Chrysler employees,  
 the Y2K period had passed and  
 the mainframe software was still operating correctly, and  
 the project was over budget.  
Source: Harvey Herela, Case Study: The Chrysler Comprehensive Compensation System. Galen Lab, U.C. Irvine, 21 April 2005. Available at 
http://calla.ics.uci.edu/histories/ccc/ from 2007-2012.  See http://web.archive.org/web/20070415000000*/http://calla.ics.uci.edu/histories/ccc/. 

32 2015 S1 Software Quality 

http://calla.ics.uci.edu/histories/ccc/
http://web.archive.org/web/20070415000000*/http:/calla.ics.uci.edu/histories/ccc/


Sanitising Inputs: A Humorous View 

http://imgs.xkcd.com/comics/exploits_of_a_mom.png  

2015 S1 33 Software Quality 

http://imgs.xkcd.com/comics/exploits_of_a_mom.png


The First “Computer Bug” 
 Moth found trapped between points 

at Relay # 70, Panel F, of the Mark II 
Aiken Relay Calculator  
 while it was being tested at Harvard 

University, 9 September 1945.  
 The operators affixed the moth to 

the computer log, with the entry: 
 “First actual case of bug being found”.  

 They put out the word that they 
had “debugged” the machine, thus 
introducing the term “debugging a 
computer program”. 
 In 1988, the log, with the moth still 

taped by the entry, was in the Naval 
Surface Warfare Center Computer 
Museum at Dahlgren, Virginia. 

Courtesy of the Naval Surface 
Warfare Center, Dahlgren, VA., 1988. 
http://www.history.navy.mil/photos/images/h9

6000/h96566kc.htm 
2015 S1 34 Software Quality 

http://www.history.navy.mil/photos/images/h96000/h96566kc.htm
http://www.history.navy.mil/photos/images/h96000/h96566kc.htm


Where are we now? 
 Many development methodologies have been proposed  
 Each tends to gather a number of zealots who: 

 advocate application of the methodology under all circumstances 
 spend significant time ‘proving’ the methodology works under all circumstances. 

 Architects originally stated that all practices must be carried out: 
 each supports the others 
 if you omit some, there will be gaps in the process  

 
 The current wisdom is that no one approach is guaranteed to be 

effective in all cases 
 Each organisation must tailor a development process suitable for its specific 

contexts 
 ‘Agile’ has morphed to mean ‘flexible’ 

 
 When the next ‘silver bullet’ arrives (as it surely will),  you should ask 

‘what is the evidence?’ 
 

35 2015 S1 Software Quality 


	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning Goals for Today
	Extreme Programming (XP)
	A Brief History of XP
	 XP Values (in1998)
	The Purpose of XP (according to Myers)
	Basics of XP (according to Myers)
	Strengths of XP (Myers)
	Strengths of XP (cont.)
	XP in a Nutshell (Myers)
	The Importance of Planning in XP (Myers)
	Examples of User Stories
	Use Case Diagrams
	12 Original Practices of XP
	Testing is Central in XP
	Testing is Central in XP
	Testing is Central in XP
	Extreme Unit Testing
	Benefits of “Test-First Coding” (Myers)
	The “Shining Point” of XP
	The importance of automated testing
	Extreme acceptance testing (XAT)
	Relation of XAT to user stories
	Automation of XAT?
	XAT: a Validation or a Verification?
	The Peril of Changing Requirements
	Software updates are hazardous
	Managing stakeholder conflicts in XAT
	Myers’s Summative Evaluation of XP
	Is C3 a Success Story for XP?
	Is C3 a Success Story for XP?
	Sanitising Inputs: A Humorous View
	The First “Computer Bug”
	Where are we now?

