
CompSci 230
Software Design and Construction

 Software Quality 2015S1
Myers’ testing principles

Lecture plan

Week 1: No class - Anzac Day
 What is software quality?
 Some key developer practices (version control, testing).

Week 2: Black box testing.
 White-box testing.
 Myers' testing principles.

Week 3: Traditional approach to testing (Waterfall).
 Agile approach to testing (XP).
 Famous failures.

2

Myers Ch. 2, pp. 12-18

2015 S1 Software Quality

Learning Goals for Today
 Have a working understanding of Myers’ principled approach to software

testing.
 Given some information about a testing situation, can you apply Myers’

principles? (“What would Myers do in this situation?”)
 Under what conditions are Myers’ principles inapplicable or inappropriate?

 I’m asking you to write some “test cases” for Myers’ principles – considering its
“unexpected inputs” as well as the inputs he explicitly considered!

 Will we discover any situations where his set of principles does not do “what it is
designed to do”?

 Will we discover any situations where his principles will “do something unintended”?

 Start to develop your own “principled approach” to software testing.
 Do you agree with all of Myers’ principles? Do you have any additional ones?
 Do you understand Myers’ argument for each of his principles?

3 2015 S1 Software Quality

Principle 1 (review)
 “A necessary part of a test case is a definition of the expected

output or result.”
Rationale:
 “If the expected result of a test case has not been predefined,
 “chances are that a plausible, but erroneous, result will be interpreted as a

correct result
 “because of the phenomenon of ‘the eye seeing what it wants to see’.”

Prescription:
 “A test case must consist of two components:
1. “A description of the input data to the program.
2. “A precise description of the correct output of the program for

that set of input data.”

4 2015 S1 Software Quality

Principle 2
 “A programmer should avoid attempting to test his or her own program.”
Rationale:
1. By analogy: “Any writer knows – or should know – that it’s a bad idea to

attempt to edit or proofread his own work.”
 Don’t good writers revise their work a few times before showing it to anyone else?
 “As your studies progress it is important to become more independent with editing

and proofreading your own work. The following points may be helpful in guiding you
through this process. “ (http://www.monash.edu.au/lls/llonline/quickrefs/20-editing-proofreading.xml)

 “Proofread more than once. If possible, work with someone else.”
(http://www.ucc.vt.edu/stdysk/proofing.html)

2. From Myers’ psychological theory:
 “… most programmers … cannot bring themselves to shift mental gears to attempt

to expose errors.”
3. Because the specification may be misinterpreted:

 “The program may contain errors due to the progtammer’s misunderstanding of the
problem statement or specification… it is likely that the programmer will carry the
same misunderstanding into tests of his or her own program.”

5 2015 S1 Software Quality

http://www.monash.edu.au/lls/llonline/quickrefs/20-editing-proofreading.xml
http://www.ucc.vt.edu/stdysk/proofing.html

Principle 2
 “A programmer should avoid attempting to test his or her own

program.”
Rationales:
1. By analogy with the (final) editing/proofreading stage of writing, where

we distinguish the writer’s task from the editor’s task;
2. From Myers’ psychological theory of “constructive” programmers and

“destructive” testers; and
3. To adequately test errors arising from a misinterpretation of the spec.
Prescription:
 “[T]esting is more effective and successful if someone else does it.”
 Caveat: “Debugging is more efficiently performed by the original programmer.”

My question:
 Should the programmer develop the initial set of white-box tests for their code?

6 2015 S1 Software Quality

Principle 3
 “A programming organization should not test its own programs.”
Rationale:
 By extension of the “psychology” rationale for Principle 2:
 “A project or programming organization is, in many senses, a living organization

with psychological problems similar to those of individual programmers.”
 “The testing process, if approached with the proper definition, may be viewed as

decreasing the probability of meeting the schedule and the cost objectives.”
Prescription:
 “This does not mean that it is impossible for a programming organization to find

some of its errors… organizations do accomplish this with some degree of
success.”

 “Rather, it implies that it is more economical for testing to be performed by an
objective, independent party.”

My question:
 Wouldn’t a well-designed and properly-administered internal testing process be

likely to reveal schedule-feasibility problems earlier, allowing these problems to
be addressed at lower total cost, than if no testing were done?

7 2015 S1 Software Quality

Principle 3 (cont.)
 “A programming organization should not test its own programs.”
Rationale:
 By Myers’ psychological theory of “constructive” versus “destructive”

motivation for programmers and testers, when it is extended to a theory
of organisational behaviour.

Prescription:
 “… it is more economical for testing to be performed by an objective,

independent party.”

My questions:
 How likely is it that a third party (especially if they are “objective” and

“independent”) will have an accurate idea of what the stakeholder wants?
 Is Myers’ 3rd principle appropriate only for the testing of well-specified

programs? How can we test our specifications?

8 2015 S1 Software Quality

Principle 4
 “Thoroughly inspect the results of each test.”
Rationale:
 “… probably the most obvious principle, but … often overlooked.”
 “We’ve seen numerous experiments that show many subjects failed to

detect certain errors, even when symptoms of those errors were clearly
observable on the output listings.”

 “… errors that are found on later tests are often missed in the results
from earlier tests.”

Prescription:
 The tester should pay attention to all observables. They should not restrict

their focus to the specified outputs.
My questions:
 Can software be adequately tested by a fully-automated process?
 What information should be included on the testing report?
 Should the tester inspect the system that produced the testing report?

9 2015 S1 Software Quality

Principle 5
 “Test cases must be written for input conditions that are invalid and

unexpected, as well as for those that are valid and expected.”
Rationale:
 “Few people, for instance, feed the [triangle-classification] program the

numbers 1, 2, 5 to make sure that the program does not erroneously interpret
this as a scalene triangle instead of an invalid triangle.”

 “… many errors that are suddenly discovered in production programs turn up
when the program is used in some new or unexpected way.”

Prescription:
 “… test cases representing unexpected and invalid input conditions” should be

included, because they “… have a higher error-detection yield than do test
cases for valid input conditions.”

My questions:
 If the programmer sees our “unexpected” test cases, then these cases are no longer

unexpected… should some of our test cases be secret?
 How can we generate “unexpected” inputs?

10 2015 S1 Software Quality

Principle 6
 “Examining a program to see if it does not do what it is supposed to do

is only half the battle; the other half is seeing whether the program does
what it is not supposed to do.”

Rationale:
 “… a payroll program that produces the correct paychecks is still an

erroneous program if it also produces extra checks for nonexistent
employees or if it overwrites the first record of the personnel file.”

Prescription:
 “Programs must be examined for unwanted side effects.”
My questions:
 For black-box testing, should the specification include some invariants, to help

the tester know what things they should monitor for unwanted change?
 For white-box testing, should the program be accompanied by a specification of

the system it will be running on, so that the tester can analyse the program to
discover the system resources which could, conceivably, be affected by a bug?

11 2015 S1 Software Quality

Principle 7
 “Avoid throwaway test cases unless the program is truly a throwaway

program.”
Rationale:
 “A common practice is to sit at a terminal and invent test cases on the

fly, and then send these test cases through the program.”
 “The major problem is that test cases represent a valuable investment…

[before retesting] the test cases must be reinvented… people tend to
avoid [this work]… the retest is rarely as rigorous as the original test”

Prescription:
 Your test cases are valuable, don’t throw them away!
My question:
 If you’re actually writing throwaway programs (i.e. rapid versioning) should you

save your cases, or should you throw them away too?

12 2015 S1 Software Quality

Principle 8
 “Do not plan a testing effort under the tacit assumption that no errors

will be found.”
Rationale:
 “This is a mistake project managers often make.” (!)
 Any such effort would not be a “testing process” (under Myers’

definition).
Prescription:
 Assume that errors will be found.

 If no errors are found, this should be a wake-up call to the test manager – the testing
process is probably not rigorous enough!!

My questions:
 What about acceptance testing? I think a product should not be presented for a

final test unless there’s strong confidence that it will pass, i.e. that no errors will
be found and the product can be released!

 If an acceptance test is repeatedly failed, then I think there’s a good chance the
final release will be unacceptable to its end-users (even after it has been bug-
fixed to pass the acceptance test.)

13 2015 S1 Software Quality

Principle 9
 “The probability of the existence of more errors in a section of a program is

proportional to the number of errors already found in that section.”
Rationale:
 If more errors have been found, to date, in module A than in module B, and if

module A has not been purposely subjected to a more rigorous test than
module B, then future tests will probably reveal more errors in module A than
in module B.

 “… errors tend to come in clusters… in the typical program, some sections
seem to be much more prone to errors than other sections”
 “nobody has supplied a good explanation of why this occurs”
 This is now an active area of SE research, see e.g. http://dx.doi.org/10.1007/978-3-540-73101-6_18

Prescription:
 If a particular section of a program seems to be much more prone to errors than

other sections, then this phenomenon tells us that, in terms of yield on our testing
investment, additional testing efforts are best focused against this error-prone section

My question:
 What about black-box testing, do errors tend to “cluster” in a portion of the spec?

14 2015 S1 Software Quality

http://dx.doi.org/10.1007/978-3-540-73101-6_18

Principle 10
 “Testing is an extremely creative and intellectually challenging task.”
Rationale:
 “It is probably true that the creativity required in testing a large

program exceeds the creativity required in designing that program.”
Prescription:
 None (!) Perhaps: managers should hire creative and intelligent testers?

My questions:
 Could too much creativity, or too much intellectual curiosity, be

undesirable in a tester?
 Should the most creative people be security testers?

 You might imagine a plausible motivation for an attacker who has plausible skills
and access rights, then imagine “what could go wrong” when the program is
installed and operated, and then determine whether the attacker would succeed
or whether the system running this program would have an adequate defence.

15 2015 S1 Software Quality

Learning Goals for Today
 Have a working understanding of Myers’ principled approach to

software testing.
 Given some information about a testing situation, can you apply Myers’

principles? (“What would Myers do in this situation?”)
 Under what conditions are Myers’ principles inapplicable or

inappropriate?
 Note that I’m asking you to write some “test cases” for Myers’ principles

– considering its “unexpected inputs” as well as the inputs he explicitly
considered!

16 2015 S1 Software Quality

	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning Goals for Today
	Principle 1 (review)
	Principle 2
	Principle 2
	Principle 3
	Principle 3 (cont.)
	Principle 4
	Principle 5
	Principle 6
	Principle 7
	Principle 8
	Principle 9
	Principle 10
	Learning Goals for Today

