
CompSci 230
Software Design and Construction

 Software Quality 2015S1
White box testing

Lecture plan

Week 1: No class - Anzac Day
 What is software quality?
 Some key developer practices (version control, testing).

Week 2: Black box testing.
 White-box testing.
 Myers' testing principles.

Week 3: Traditional approach to testing (Waterfall).
 Agile approach to testing (XP).
 Famous failures.

 Myers Ch. 2, pp. 10-12

2015 S1

Learning Goals for Today
 Develop a test suite for some code after looking at it. (White-box

testing.)
 What are your initial questions? (Have you written some already?)
 Should I analyse the specification carefully, as in black-box testing, to discover

“what the code should be doing”?
 Does white-box testing have an advantage, over black-box testing, in testing

“what the program is not intended to do”?
 Should I carefully test interfaces, exceptions, or error returns, or should I

concentrate on confirming the correctness of functional “internal” behaviour?

 Evaluate strengths and weaknesses of Black-box and White-box testing.

2015 S1

White-Box Testing
 “This strategy derives test data from an examination of the

program’s logic
 “(and often, unfortunately, at the neglect of the specification).”
 Hmmm… Myers is not encouraging white-box testers to “neglect” the

specification.
 He is pointing out that many white-box testers do not pay careful attention to the

specification.

 Aim is to test what has been implemented

2015 S1

White-Box Testing
 What is the overall strategy or “gold standard” for white-box

testing?
 “Causing every statement in the program to execute at least once”?
 No… this is “highly inadequate”. (Can you see why?)

2015 S1

A Gold Standard for White-Box Testing
 Exhaustive Path Testing: a gold standard for White-Box Testing
 “if you execute, via test cases, all possible paths of control flow through the

program, then possibly the program has been completely tested.”

 Testing all possible paths of control flow is not enough to prove
correctness in a white-box test, so how can this be a gold standard?
 Recall that testing all possible inputs is not enough to prove correctness in a

black-box text, yet this is still the gold standard for black-box testing.
 The justification is the other way around! If you don’t exercise all control paths,

then a test case for this path may reveal an obvious bug in this path. Someone
might ask: why didn’t you test that path? How would you respond.

2015 S1

A Gold Standard for White-Box Testing
 Exhaustive Path Testing:

 Testing all paths is often (almost always?) infeasible.
 Recall that the gold-standard for black-box testing (of testing all possible

inputs) is almost always infeasible.
 Even if you know you can’t possibly “reach the gold”, you can still use this

standard to measure your progress!

2015 S1

What is a “Possible Path of Control Flow”?
 Myers does not offer a sharp definition in this chapter – you’d have

to read Chapter 4 (and even there you won’t find one AFIK ;-).
 In Chapter 2, he discusses the concept of a “unique logic path”, where a

“logic path” is the sequence of instructions executed when a
program is given a particular input.

 If the program has a conditional branch, then it has multiple logic paths
(assuming that an input can be found which causes the program to
branch, and another input which causes the program not to branch).

 Your goal, as a white-box tester, is to devise an input which will
“force” the program to take each important path.
 We define “path” informally in this course, with reference to a flowchart

as on the following slide.

2015 S1

White-Box Testing: An Example
 Devise a test set for this code. (Inputs: a, b; Outputs: a, x, y.)

2015 S1

White-Box Testing: An Example
 a = 1, b = 1 ? Yes, this is “red” input… output: a = 1, x = 2, y = 1.

2015 S1

White-Box Testing: An Example
 a = 1, b = 2 ? Hmmm… x = 3, y = 2; then a = 2, x = 4.

2015 S1

White-Box Testing: An Example
 a = 1, b = 3 ? Hmmm… x = 4, y = 3; a = 2, x = 7; a = 3, x = 10.

2015 S1

When should we stop?
 Don’t add a test unless it has a reasonable chance of exposing a new bug.
 A loop that “works correctly” on two iterations is not very likely to show an

obvious problem on the third iteration, so we might stop after testing the green
path.

 A problem: we don’t know what this program is supposed to do, so how
can we choose a “correct” set of output values for each of our test cases
in this example??!
 This example is an extreme form of white-box testing, in which there is no

specification, aside from the code we’re looking at.

2015 S1

If you test a path…
 Can you conclude that there are no bugs on a path you have

tested? Of course not! … but let’s list some reasons why we may
miss some bugs, then think about whether we can write test cases
to cover these…

 The output we specify for our test case may be incorrect

 because we were doing a regression test against a buggy version of our program,
 because we interpreted the specification carelessly,
 or because the specification wasn’t clear.

 What can we do to decrease the number of incorrect test cases we
write?

2015 S1

If you test a path…
 There may be data-sensitive calculations in the path, and we’re only

testing a single point of what may be a very non-linear function.
 If the path contains “x = a+b” but it should contain “x = a*b”, our case won’t

reveal the error if our test input has a=0 or b=0.
 Should we write more test cases for paths with data-sensitive computations?

 The computation on this path may be non-deterministic.

 If a program is multi-threaded, then the value computed on one path may depend
greatly on what path another thread is following, and on how far along that path
the other thread has already moved. (Do you understand multi-threading?)

2015 S1

Coverage techniques
 Consider

2015 S1
Myers Ch. 4, pp. 3-9

public void foo(int a, int b, int x) {
 if (a>1 && b==0) {
 x = x/a;
 }
 if (a==2 || x>1) {
 x = x+1;
 }
}

a>1
AND
b==0

a=2
OR
x>1

x = x + 1

x = x/a

a

Y

Y

N

N

b

d

c

e

Statement coverage

2015 S1
Myers Ch. 4, pp. 3-9

public void foo(int a, int b, int x) {
 if (a>1 && b==0) {
 x = x/a;
 }
 if (a==2 || x>1) {
 x = x+1;
 }
}

Test input
a=2, b=0, x=3

What if this should
have been OR?

a>1
AND
b==0

a=2
OR
X>1

x = x + 1

x = x/a

a

Y

Y

N

N

b

d

c

e
What if this should

have been x>0?

Decision coverage

2015 S1
Myers Ch. 4, pp. 3-9

Either
 paths ace and abd

Or
 paths acd and abe

BUT

 Only the former
explores the path where
x is not changed

a>1
AND
b==0

a=2
OR
x>1

x = x + 1

x = x/a

a

Y

Y

N

N

b

d

c

e

Each decision outcome covered by a
test case (cover every branch)

Decision/condition coverage

2015 S1
Myers Ch. 4, pp. 3-9

a>1
AND
b==0

a=2
OR
x>1

x = x + 1

x = x/a

a

Y

Y

N

N

b

d

c

e

Each condition in a decision
outcome covered by a test case

• Test cases cover 8 combinations:

1. a>1, b=0
2. a>1, b!=0
3. a<=1, b=0
4. a<=1, b!=0
5. a=2, x>1
6. a=2, x<=1
7. a!=2, x>1
8. a!=2, x<=1

Decision/condition coverage

2015 S1
Myers Ch. 4, pp. 3-9

a>1
AND
b==0

a=2
OR
x>1

x = x + 1

x = x/a

a

Y

Y

N

N

b

d

c

e

1. a>1, b=0
2. a>1, b!=0
3. a<=1, b=0
4. a<=1, b!=0

5. a=2, x>1
6. a=2, x<=1
7. a!=2, x>1
8. a!=2, x<=1

All combinations of conditions

Test cases
a=2, b=0, x=4 covers 1, 5 (ace)
a=2, b=1, x=1 covers 2, 6 (abe)
a=1, b=0, x=2 covers 3, 7 (abe)
a=1, b=1, x=1 covers 4, 8 (adb

We missed acd

Strengths of White-Box Testing
 It is a very natural approach when testing a GUI.
 If you test set includes a path through every implementation of a

MouseListener (in an AWT code) then your test coverage will include
most of the GUI activity.

 It is a very efficient approach for strongly-OO code.
 Unit testing: the process of testing each object (or method), to confirm

that it works correctly. Usually combined with integration testing, to
confirm that the modules “work correctly together”.

 If each unit is straight-line code or has just a single branch or loop, then
we can easily write a “gold standard” collection of (white-box) unit tests.

 If the integration code does not have complex paths, then it can be white-
box tested with good coverage (but probably not to gold-standard).

2015 S1

Summary
 Black box

 Design tests from the specifications only (no knowledge of code
structure)
 Tester must understand the user perspective
 Independent tester? Or developer with domain knowledge?

 Techniques

 Equivalence partitioning (split the input into partitions, where values in each
partition can be viewed as being ‘similar’)

 Boundary value analysis (for each partition, choose values at the boundaries over
those in the middle of the partition)

2015 S1

Summary
 Black box

2015 S1

Thoughts

Perhaps if the software-under-test is an application, someone who
understands the users viewpoint will be more effective?

Is this technique really appropriate for within-development? What if the
software-under-test is an API? Who is the user?

In a way, Black box testing can be viewed as testing interfaces – between
human user and application, system interfaces, development modules, …

Can we use only for functionality? Or can we use to test other quality
characteristics (efficiency, reliability, …)?

Summary
 White box

 Design tests from a knowledge of code structure
 Tester must be familiar with programming language
 Developer ? (BEFORE submitting code)

 Logic path techniques (in order of strength)
 Statement coverage
 Decision coverage
 Decision/condition coverage

2015 S1

Summary
 White box

2015 S1

Thoughts

Developer unwillingness to find defects in his or her own work (Myers’
psychology of testing).

What if the code is wrong in the first place (developer didn’t understand the
specification)? Tests will pass when carried out by developer, but QA may
later reject code when testing from the specs.

It might be difficult to find inputs that will force a test to take a specific path.
Even more difficult to be sure every path is taken (recognising ‘dead code’ is
surprisingly difficult in a procedural programming language such as Java or C).

Aim to exercise the most likely usage paths? Is the developer the best person
to know this? Is this where Black box testing comes in?

Myers’ Principles
 “Continuing with the major premise of this chapter,
 “That the most important considerations in software testing are issues of

psychology,

 “We can identify a set of vital testing principles or guidelines.”

 Wow – artistic guidelines for testers!
 Myers is giving advice on how you can be a better tester.
 More precisely, he’s telling you what he thinks a tester should do.

 “Most of these principles may seem obvious, yet they are all too
often overlooked.”

2015 S1

Principle 1
 “A necessary part of a test case is a definition of the expected output or

result.”
Rationale:
 “If the expected result of a test case has not been predefined,
 “chances are that a plausible, but erroneous, result will be interpreted as a correct

result
 “because of the phenomenon of ‘the eye seeing what it wants to see’.”

Prescription:
 “A test case must consist of two components:
1. “A description of the input data to the program.
2. “A precise description of the correct output of the program for that set of

input data.”

I think Myers’ advice is sound. Do you? (Are you willing to give his prescription a
go? Or do you think it might poison you?)

2015 S1

	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning Goals for Today
	White-Box Testing
	White-Box Testing
	A Gold Standard for White-Box Testing
	A Gold Standard for White-Box Testing
	What is a “Possible Path of Control Flow”?
	White-Box Testing: An Example
	White-Box Testing: An Example
	White-Box Testing: An Example
	White-Box Testing: An Example
	When should we stop?
	If you test a path…
	If you test a path…
	Coverage techniques
	Statement coverage
	Decision coverage
	Decision/condition coverage
	Decision/condition coverage
	Strengths of White-Box Testing
	Summary
	Summary
	Summary
	Summary
	Myers’ Principles
	Principle 1

