
CompSci 230
Software Design and Construction

 Software Quality 2015S1
Black box testing

Lecture plan

Week 1: No class - Anzac Day
 What is software quality?
 Some key developer practices (version control, testing).

Week 2: Black box testing.
 White-box testing.
 Myers' testing principles.

Week 3: Traditional approach to testing (Waterfall).
 Agile approach to testing (XP).
 Famous failures.

Myers Ch. 2, pp. 8-10

JUnit Tutorial v2.3 by Lars Vogel, 2012-12-06, sections 1-3.3

2015 S1

Learning Goals for Today
 Develop a “working understanding” of Myers’ theory of the economics

of software testing.
 Can we simply ‘test everything,’ just to be sure?

 Develop a test suite for some code without looking at it. (Black-box

testing.)
 What are your initial questions? (Have you written some already?)
 Should I try to “write it myself” (to discover some likely bugs)?
 Should I carefully test interfaces, exceptions, or error returns, or should I

concentrate on confirming the correctness of functional “internal” behaviour?

2015 S1

Triangle-classification program
 Last session, you were challenged to think about how to test a

small program.

 Program description:
 “The program reads three integer values from an input dialog.
 “The three values represent the lengths of sides of a triangle.
 “The program displays a message that states whether the triangle is

scalene, isosceles, or equilateral.”

 Recall:
 A scalene triangle is one where no two sides are equal.
 An isosceles triangle has two equal sides.
 An equilateral triangle has three sides of equal length.

2015 S1

Triangle-classification program
 My thought process (yours will be different!): this program has at

least three outputs: “scalene”, “isosceles”, “equilateral”…
 I know that a set of test cases doesn’t have complete coverage if it

doesn’t include at least one case for each program output.
 I can easily write three test cases: a valid input for a scalene triangle, a

valid input for an isosceles triangle, and a valid input for an equilateral
triangle.

 Be careful!
 “Do you have a test case that represents a valid scalene triangle? (Note

that test cases such as 1,2,3 and 2,5,10 do not warrant a “yes” answer
because there does not exist a triangle with these dimensions.)”

 (Hmmm, I wrote “1,2,3”. I thought this was an interesting – because
degenerate – case of a scalene triangle ;-)

 Process question: how can I be sure my test cases are correct?

2015 S1

Myer’s evaluation scheme
 1,2,3: do you have valid test cases for the three types of triangle?
 My result: no I didn’t in all cases, but I *thought* I did. And my mistake

revealed an ambiguity in the program specification!

 4: “Do you have at least three test cases that represent valid
isosceles triangles such that you have tried all three permutations
of three equal sides (such as, 3,3,4; 3,4,3; and 4,3,3)?”
 My result: no.
 Why does Myers think this is important? Hmmm… now I get it! (Do

you?)

 5: “Do you have a test case in which one side has a zero value?”
 My result: no, I didn’t test for a degenerate (zero-area) isosceles triangle.

This is an important boundary case which I should have tested. Ooops!

2015 S1

Myers’ Evaluation of a Set of Test Cases
 6. Do you have a test case in which one side has a negative value?
 Ouch, I really should have thought of that! I’ve been burned by that sort

of latent bug before… !@#^&* unsigned ints in C…

 7. Do you have a test case with three integers greater than zero
such that the sum of two of the numbers is equal to the third?
 Well, no, but I’m finally remembering the “triangle inequality”:

 For any triangle, the sum of the length of any two sides is greater than or equal to
the length of the third side.

 For triangles drawn on a Euclidean plane, the inequality is strict: “For any non-
degenerate triangle, the sum of the length of any two sides is greater than the
length of the third side.”

 I finally know enough about the problem to write a good test suite!
 If you don’t discover the “boundary cases” you probably won’t test them…

2015 S1

Continuing with Myers’ Evaluation
 7. ... “(That is, if the program said that 1,2,3 represents a scalene triangle,

it would contain a bug).”
 Oh… now you’re telling me! I would have called it a “degenerate scalene

triangle” – it’s still scalene, but has zero area. But if you don’t want to call it a
triangle, that’s fine by me: you write the spec, and I test it. I’ll adjust my test
cases now.

 8. Do you have at least three test cases in category 7 (i.e. a degenerate
triangle with zero area) such that you have tried all three permutations
where the length of one side is equal to the sum of the lengths of the
other two sides (for example, 1,2,3; 1,3,2; and 3,1,2)?
 No… but I see what you’re getting at. An input that is “strange” in one way (e.g.

degenerate) may provoke strange behaviour in the program, so I should test
such cases carefully (provoking all possible program outputs; different input
permutations; …)

2015 S1

Writing Test Cases is an Iterative Process!
 The initial set of test cases will, usually, trigger some questions

about what the program is “designed to do” and what is
“unintended”.
 Most program-specifiers don’t think about what is “unintended”.
 Most program-specifiers assume that “everybody” will know what they

mean by a “simple” word such as “triangle” or “input”.
 Test cases usually reveal ambiguities and gaps in the specification!

 But: you’ll never get a job done if you keep asking questions.
 Usually you have to “steam ahead”. If you’re methodical, you’ll write

down your unanswered questions, and prioritise them. (Should a tester
be methodical?)

 Which questions are important enough that they really must be answered
before I deliver my first-draft test set? (My experience: none!!!!)

2015 S1

Myers Evaluation: it just keeps going…
 9. Do you have a test case with three integers greater than zero such

that the sum of two of the numbers is less than the third (such as 1,2,4
or 12,15,30)?
 Yes, I wrote this case. But your spec didn’t say how the program is supposed to

behave when it gets an input that isn’t a triangle. I assumed the program should
terminate normally, and output nothing. (Is this what you want it to do? I can’t
test for the “correct” production of an unspecified output.)

 10. Do you have at least three test cases in category 9 such that you have
tried all three permutations (for example, 1,2,4; 1,4,2; and 4,1,2)?
 No, I didn’t think about permuting that case. But it’s very important, come to

think of it! If the program doesn’t check all three triangle inequalities (A+B<C,
A+C<B, and B+C<A) then it’ll accept some non-triangle inputs.

2015 S1

… and going… who would have guessed?
 11. Do you have a test case in which all sides are zero (0,0,0)?
 No. (Why is this important, I wonder? Ah… a “boundary” with the

negative-length case!)
 12. Do you have at least one test case specifying non-integer values

(such as 2.5,3.5,5.5)?
 Well, I did a little checking of the keyboard input, but my test was for

integers that would overflow a 4-byte signed int: 10000000000,
20000000000, 40000000000. I also gave some thought to checking for
semicolons, commas, and spaces as delimiters but I reckoned that this was
my first-draft test set for a program with an unspecified input format. I’d
prefer to see the first set of testing results before finalising my tests.

 Is the program written in C, Java, Fortran, PHP? Different programming
languages handle integer input quite differently, leading to different
confusions over “unintended behaviour”.

2015 S1

… more evaluative questions from Myers!
 13. “Do you have at least one test case specifying the wrong

number of values (two rather than three integers, for example)?
 Well, I certainly thought about writing one, then decided that was a test

case for the “input dialog module”. Now that I know I’m supposed to
test a program that is handling its own keyboard input, I’ll add more cases.
I have been making a lot of incorrect assumptions about the input format
you designed your program to handle. Do you want to tell me about
your format now?

 14. “For each test case did you specify the expected output from
the program in addition to the input values.”
 Yes, But I incorrectly guessed what was “expected” for degenerate

triangles. And I still don’t know what the program was designed to
output in cases where the input is not a triangle. So some of my output
specifications are incorrect.

2015 S1

Myer’s Summative Metric
 Myers gives one point for an affirmative answer to each question.

Max 14. Min 0. Average (for “highly qualified professional
programmers”) 7.8.
 My score: 4. (Do you really want to listen to my lectures on testing?)

 “The point of the exercise is to illustrate that the testing of even a
trivial program such as this is not an easy task.”
 Was his exercise successful for you? For others? (You could test this!)

 “… consider the difficulty of testing a 100,000-statement air traffic
control system …”
 Ouch. The text shows its age! This passage was probably written for the

first edition and hasn’t been updated…
 This introductory chapter raised some very interesting questions and

provided plausible definitions; but is Myers’ advice still relevant?

2015 S1

Some Recent Software Systems
 “An entirely new architecture is needed, which may mean moving away

from a central computer to a more distributed client-server system. That
would enable the FAA to upgrade the host in bite-sized chunks, rather
than recoding all at once the 1-1/2 million lines of code that got us into
trouble in the first place.”
[In Search of the Future of Air Traffic Control”, IEEE Spectrum, August 1997]

 “a typical cellphone now contains 2 million lines of code; by 2010 it will
likely have 10 times as many… [and] cars will each have 100 million lines
of code.”
[“Why Software Fails”, IEEE Spectrum, September 2005]

 “… about 8.6 million lines of Android's 11 million are open-source.”
[“Google carves an Android path through open-source world”, CNET News, 22 May 2008]

 Can anyone afford to write ten million test cases for a single program?
Can we rely on programs that aren’t fully tested?

2015 S1

http://sdg.csail.mit.edu/D2/spectrum_aug97_atc.htm
http://spectrum.ieee.org/computing/software/why-software-fails/0
http://news.cnet.com/8301-13580_3-9949793-39.html

Testing observations
 Can we make some sense of what we discovered when trying to

test the triangle-classification program above?

 Some observations. We :
 had to check that each input was valid (e.g. not negative or zero)
 had to check that the combination of inputs was valid (sum of length of 2

sides > length of 3rd)
 did not know what to do for an invalid set of inputs (1,2,4)
 did not understand the user’s viewpoint (degenerate case)
 we had to check all permutations of the inputs
 had to check the program correctly categorised the inputs (functioned

correctly)

2015 S1

Economics of Software Testing
 “In an ideal world, we would want to test every possible permutation of

a program.
 In most cases, however, this simply is not possible.
 Even a seemingly simple program can have hundreds or thousands of possible

input and output combinations.”
 “Creating test cases for all of these possibilities is impractical”
 Why? Can’t a computer program help me generate tests for 10k possibilities?

But I can see a feasibility problem if there are more than a billion possibilities...
 “Complete testing of a complex application would take too long and

require too many resources to be economically feasible.”
 I agree – completely testing a 32-bit multiplier is infeasible, and that’s not even a

complex application!
 Hmmm… is there an objective way to determine the “dollar value” of a

software test? Is testing an art, a craft, or an engineering discipline?

2015 S1

More on the Economics of Testing
 If you accept that the primary purpose of testing is defect-

identification (rather than for sales-support ;-), then… what is a
cost-effective way to test?

 Myers suggests that the appropriate first step (by the tester or
their manager) is to make a strategic decision. Two of the most
common strategies:
 Black-box testing
 White-box testing

2015 S1

Black-box Testing
 In black-box, data-driven, or input/output-driven testing you should
 “… view the program as a black box.
 “Your goal is to be completely unconcerned about the internal behavior

and structure of the program.
 “Instead, concentrate on finding circumstances in which the program does

not behave according to its specifications. …
 “test data are derived solely from the specifications (i.e. without taking

advantage of knowledge of the internal structure of the program).”

 (Is this the first testing strategy you thought of, while reading this

Chapter? Can you think of any strengths or weaknesses?)

2015 S1

Evaluating a Black-Box Test Set
 To have a chance of finding all errors, you could use exhaustive input

testing: making use of every possible input condition as a test case.”
 This is a “gold standard” for defect-detection – but infeasible, in nearly all

cases of practical interest.
 Could you exhaustively test the triangle-classification program of Chapter 1?

 Exhaustive test is desirable: if you don’t test all possible inputs, then the
program may exhibit a bug on any of the inputs you don’t test.

 True or false: if you test all possible inputs, and the program passes all of
your tests, then you have demonstrated that the program has no bugs.
 A program may write to disk, behaving differently on subsequent runs.
 The program may be multi-threaded, with an occasional race leading to an

incorrect answer, or an occasional deadlock.
 A test case may have an error.

2015 S1

Maximising “Yield on Investment”
 The “objective should be to maximise the yield on the testing

investment by maximising the number of errors found by a finite
number of test cases.”

 “Doing so will involve, among other things,
 being able to peer inside the program and
 making certain reasonable, but not airtight, assumptions about the

program
 (for example, if the triangle program detects 2,2,2 as an equilateral

triangle, it seems reasonable that it will do the same for 3,3,3).

 This seems to contradict an earlier statement:
 “Your goal is to be completely unconcerned about the internal behavior

and structure of the program.”

2015 S1

Is Myers Advocating “Grey-box testing”??
 Myers seems to say you must be able to peek at (or rather “peer

inside”) a program, in order to write a good set of black-box tests?
 I think Myer does not mean this!

 A tester shouldn’t peek;
 but they can (and I think should!) guess at the code a programmer is likely

to write, then
 write some cases to “catch the errors” which might occur if the programmer

wrote a buggy version of this code.

 For example, when a programmer is writing a conditional test for
isosceles triangles,
 they might test whether the first two integers are equal, and whether the last two

integers are equal, but
 they might “forget” to test whether the first and third integers are equal.

2015 S1

Black box strategies
 Equivalence partitioning:
 “A test case should invoke as many different input considerations as

possible to minimize the total number of test cases necessary.”
 “You should try to partition the input domain … into a finite number of

equivalence classes such that you can reasonably assume … that a test of
a representative value of each class is equivalent to a test of any other
value.”

2015 S1

Myers Ch. 4, pp. 50

Black box strategies
 Example:
 Valid input is integer in range 3 – 10.
 3 tests

 out of range at lower end (say, 1)
 in range (6)
 out of range at higher end (15)

 Example:
 Valid input is character string, first character must be a letter.
 2 tests

 first character is a letter
 first character is not a letter

2015 S1

Black box strategies
 Boundary value analysis:
 “Rather than selecting any element in an equivalence class as being

representative, … elements (should) be selected such that each edge of
the equivalence class is the subject of a test.”

 “Rather than just focussing attention on the input conditions (input
space),test cases are also derived by considering the result space (output
equivalence classes).”

2015 S1

Myers Ch. 4, pp. 55

Black box strategies
 Example:
 Valid input is integer in range 3 – 10.

 out of range at lower end (2)
 in range (two tests - 3, 10)
 out of range at higher end (11)

 Example:
 Output is ordered list of items.

 focus on first and last elements in the list

2015 S1

Some scenarios
 Based on the earlier observations with the triangle-classification

program, can you think about how you might go about designing
black-box tests for a program with the following characteristics:

 a string input
 an input that is a list of items
 the program adds/removes items to/from a list

2015 S1

A Very Brief Introduction to JUnit
 JUnit is a set of “software tools” for unit testing.
 Kent Beck adapted it from his earlier SUnit [K. Beck, “Simple Smalltalk Testing:

with Patterns”, chapter 30 of Guide to Better Smalltalk, 1998].
 The syntax and semantics of JUnit are variable, depending on the release

version.
 Old tests must be ported and re-validated, if you’re using a new version of Java

or a new version of JUnit.
 A distraction: “Write Once, Run Anywhere” (WORA) does not imply

“Write Once, Run At Any Time in the Future”!
 A cynical joke: “Write Once, Debug Everywhere”.

 (Microsoft’s JVM wasn’t the same as Sun’s. Apple’s JVM isn’t the same as Oracle’s…
See http://www.uberpulse.com/us/2008/05/java_write_once_debug_everywhere.php.)

 It is possible to write very portable Java, and very portable JUnit tests.
 You should use only basic features and standard libraries!

2015 S1

http://www.uberpulse.com/us/2008/05/java_write_once_debug_everywhere.php

A Test Fixture in JUnit
import org.junit.*;
public class testYourClass { \\ tests for YourClass
 @Before public void setUp(){
 \\ allocate some objects for use during test
 }
 \\ put your test cases here
 @Test public void testCheckPrime() {
 assertFalse(check4prime.primeCheck(0)); \\ Test Case #1
 assertTrue(check4prime.primeCheck(3)); \\ Test Case #2
 }
 @Test(expected=IllegalArgumentException.class,timeout=100)
 public void testCheckPrimeRed() {
 assertTrue(check4prime.inputValidator(“1,000”)); \\ Test Case #3
 }

 @After public void cleanUp() { \\ de-allocate your test setup
 }
}

 By convention, if you’re testing Xxx your extension should be called testXxx (or XxxTest).

2015 S1

	CompSci 230�Software Design and Construction�
	Lecture plan
	Learning Goals for Today
	Triangle-classification program
	Triangle-classification program
	Myer’s evaluation scheme
	Myers’ Evaluation of a Set of Test Cases
	Continuing with Myers’ Evaluation
	Writing Test Cases is an Iterative Process!
	Myers Evaluation: it just keeps going…
	… and going… who would have guessed?
	… more evaluative questions from Myers!
	Myer’s Summative Metric
	Some Recent Software Systems
	Testing observations
	Economics of Software Testing
	More on the Economics of Testing
	Black-box Testing
	Evaluating a Black-Box Test Set
	Maximising “Yield on Investment”
	Is Myers Advocating “Grey-box testing”??
	Black box strategies
	Black box strategies
	Black box strategies
	Black box strategies
	Some scenarios
	A Very Brief Introduction to JUnit
	A Test Fixture in JUnit

