Custom Widgets
and Drawing

LIBRARY
J3 Music
& Movies
TV Shows
O Podcasts
4" Radio
STORE
iTunes Store
Purchased

VPLAYLISTS
F Music Yideos

THE UNIVERSITY

Recap: @ OF AUCKLAND

Rendering of Widgets

Widgets have a visual representation

Widgets define “paint” event listener: draws the widget by
sending commands to the windowing system

Widget gets paint events (aka. “update events”) from the
windowing system (through GUI framework)

Often not complete redrawing, but “update region”
Application can send “invalidate” events to the windowing
system if redrawing necessary (to trigger paint events)

Update Region

Activate
green

Butron

window

How Swing Widgets are Painted

All Swing widgets inherit from JComponent

e JComponent defines paint (Graphics q)
e paint () called by the system whenever drawing is
necessary

paint () calls other methods of JComponent

e paintComponent () paints the widget (override this!)

e paintBorder () paints a border the widget may have
(see border property)

e paintChildren () paints the children of the widget, if itis a
container (don't override this!)

[Button]

You never call paint () directly

e Instead invalidate the widget region by calling repaint ()
e repaint () asynchronously calls paint ()
(through windowing system)
e You can give dirty region as argument: repaint (Rectangle r)

Creating a Custom Widget

1. Create new class that extends JPanel
2. Override paintComponent (Graphics g) with custom

drawing code
o Make sure to honor the width and height of the widget

o Possibly call super.paint (g) to draw the superclass
widget (e.g. unicolored background)
3. Override getPreferredSize () to return the right preferred

size for your widget

class MyPanel extends JPanel ({ Ll
public void paintComponent (Graphics g) {
super .paintComponent (g) ;

Hello World!

g.drawString ("Hello World!'",10,20);
}

public Dimension getPreferredSize() {
return new Dimension(100,50) ;

P

Drawing with Java

Always draw in a graphics context (Graphics /
Graphics2D):

Uniform way to draw on different devices,
like a universal canvas

Properties of the current pen used for drawing

O
O
O
O

O

color, background, font
stroke, i.e. pen size and shape
paint, i.e. a color pattern to use

composite type, i.e. how it looks when shapes are
drawn onto existing shapes (e.g. blending them together)
clipping rectangle to limit painting area

Drawing methods, e.g. draw (Shape) , £ill (Shape),
drawString () , drawImage ()

Transformation methods to apply to the drawing operations,
e.gd. scale (), rotate (), translate()

Drawing Basics

(0, 0)

e By default, coordinate space origin in the top-left corner

e Shapes and lines represented as classes implementing
interface Shape

Draw —————» 1

:

Rectangle2D RoundRectangle2D

o draw(Shape s) draws shape outline

using color and stroke .
o f£ill (Shape s) mage ———> !R

draws solid shape using color /paint

e drawString(String s, float x, float y)
draws text using font
e drawImage (Image i, int x, int y, ...)

http://docs.oracle.com/javase/tutorial/2d/overview/index.html

http://docs.oracle.com/javase/tutorial/2d/overview/index.html
http://docs.oracle.com/javase/tutorial/2d/overview/index.html

RoundedButton Part 1

class RoundedButton extends JButton {
public void paintComponent (Graphics g) {
// Argument of paint() is actually a Graphics2D object,
// which has more functionality than Graphics
Graphics2D g2 = (Graphics2D) g;

// Switch on anti-aliasing, which looks better

g2 .setRenderingHint (RenderingHints.KEY ANTIALIASING,
RenderingHints.VALUE . ANTIALIAS _ON) ;

g2. setRenderlnngnt(Renderlnngnts KEY TEXT ANTIALIASING,
RenderingHints.VALUE TEXT ANTIALIAS _ON) ;

Without Anti- |4 = With - ~
Aliasing: A ol Anti—AIiasing: 4

g2.setColor (getBackground()) ;
g2.fill (new Rectangle2D.Float (
0, 0, getWidth(), getHeight()))

g2.setColor (new Color (110, 120, 210)); 4
g2.£fill (new RoundRectangle2D.Float (h
0, 0, getWidth(), getHeight(), 50, 50));

RoundedButton Part 2

g2.setColor (new Color (120, 130, 255));
g2.setStroke (new BasicStroke(5)) ;
g2.draw (new RoundRectangle2D.Float (A

2, 2, getWidth() - 4, getHeight() - 4, 50, 50));
g2.setStroke (new BasicStroke (1)) ;

=
_d

FontMetrics metrics = g2.getFontMetrics (getFont()) ;
int h = metrics.getAscent() ;
int w = metrics.stringWidth (getText()) ; ascender fine

g2.setColor (getForeground()) ; baseline

width

g2.drawString (getText (), advance
(getWidth() - w) / 2, (getHeight() + h) / 2);

descender line

}

r ~
_d

public static void main(String[] args) { .
JFrame frame = new JFrame() ;
RoundedButton r = new RoundedButton(); r.setText
("Hello!") ;
r.setFont (new Font ("Comic Sans MS", Font.PLAIN, 16));
frame.getContentPane () .add(r) ;
frame.pack(); frame.setVisible (true);

} o}

ELS

THE UNIVERSITY
OF AUCKLAND

Summary \

NI
SN

e Drawing can be performed using graphics objects
o A graphics context (Graphics2D)
O Strokes, Fonts, Colors...
o Shape objects that can be drawn or £illed
e Custom components can be created by overriding the
method paintComponent(Graphics g) of a widget

References:

e The Java Tutorials: 2D Graphics.
http.//docs.oracle.com/javase/tutorial/2d/

e The Java Tutorials: Performing custom painting. htip:
//docs.oracle.com/javase/tutorial/uiswing/painting/

http://docs.oracle.com/javase/tutorial/2d/
http://docs.oracle.com/javase/tutorial/2d/
http://docs.oracle.com/javase/tutorial/uiswing/painting/
http://docs.oracle.com/javase/tutorial/uiswing/painting/
http://docs.oracle.com/javase/tutorial/uiswing/painting/

