
Custom Widgets
and Drawing

Recap:
Rendering of Widgets
Widgets have a visual representation

● Widgets define “paint” event listener: draws the widget by
sending commands to the windowing system

● Widget gets paint events (aka. “update events”) from the
windowing system (through GUI framework)

● Often not complete redrawing, but “update region”
● Application can send “invalidate” events to the windowing

system if redrawing necessary (to trigger paint events)

How Swing Widgets are Painted
All Swing widgets inherit from JComponent
● JComponent defines paint(Graphics g)
● paint() called by the system whenever drawing is

necessary

paint() calls other methods of JComponent
● paintComponent() paints the widget (override this!)
● paintBorder() paints a border the widget may have

(see border property)
● paintChildren() paints the children of the widget, if it is a

container (don't override this!)

You never call paint() directly
● Instead invalidate the widget region by calling repaint()
● repaint() asynchronously calls paint()

(through windowing system)
● You can give dirty region as argument: repaint(Rectangle r)

Creating a Custom Widget
1. Create new class that extends JPanel
2. Override paintComponent(Graphics g) with custom

drawing code
○ Make sure to honor the width and height of the widget
○ Possibly call super.paint(g) to draw the superclass

widget (e.g. unicolored background)
3. Override getPreferredSize() to return the right preferred

size for your widget

class MyPanel extends JPanel {
public void paintComponent(Graphics g) {

super.paintComponent(g);
g.drawString("Hello World!",10,20);

}

public Dimension getPreferredSize() {
return new Dimension(100,50);

} }

Drawing with Java
Always draw in a graphics context (Graphics /
Graphics2D):

● Uniform way to draw on different devices,
like a universal canvas

● Properties of the current pen used for drawing
○ color, background, font
○ stroke, i.e. pen size and shape
○ paint, i.e. a color pattern to use
○ composite type, i.e. how it looks when shapes are

drawn onto existing shapes (e.g. blending them together)
○ clipping rectangle to limit painting area

● Drawing methods, e.g. draw(Shape), fill(Shape),
drawString(), drawImage()

● Transformation methods to apply to the drawing operations,
e.g. scale(), rotate(), translate()

Drawing Basics
● By default, coordinate space origin in the top-left corner

● Shapes and lines represented as classes implementing
interface Shape

○ draw(Shape s) draws shape outline
using color and stroke

○ fill(Shape s)
draws solid shape using color / paint

http://docs.oracle.com/javase/tutorial/2d/overview/index.html

● drawString(String s, float x, float y)
draws text using font

● drawImage(Image i, int x, int y, ...)

http://docs.oracle.com/javase/tutorial/2d/overview/index.html
http://docs.oracle.com/javase/tutorial/2d/overview/index.html

RoundedButton Part 1
class RoundedButton extends JButton {
 public void paintComponent(Graphics g) {
 // Argument of paint() is actually a Graphics2D object,
 // which has more functionality than Graphics
 Graphics2D g2 = (Graphics2D) g;

 // Switch on anti-aliasing, which looks better
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON);
 g2.setRenderingHint(RenderingHints.KEY_TEXT_ANTIALIASING,

RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

 g2.setColor(getBackground());
 g2.fill(new Rectangle2D.Float(

0, 0, getWidth(), getHeight()));

 g2.setColor(new Color(110, 120, 210));
 g2.fill(new RoundRectangle2D.Float(

0, 0, getWidth(), getHeight(), 50, 50));

 ...

Without Anti-
Aliasing:

With
Anti-Aliasing:

RoundedButton Part 2
 g2.setColor(new Color(120, 130, 255));
 g2.setStroke(new BasicStroke(5));
 g2.draw(new RoundRectangle2D.Float(
 2, 2, getWidth() - 4, getHeight() - 4, 50, 50));
 g2.setStroke(new BasicStroke(1));

 FontMetrics metrics = g2.getFontMetrics(getFont());
 int h = metrics.getAscent();
 int w = metrics.stringWidth(getText());

 g2.setColor(getForeground());
 g2.drawString(getText(),
 (getWidth() - w) / 2, (getHeight() + h) / 2);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame();
 RoundedButton r = new RoundedButton(); r.setText
("Hello!");
 r.setFont(new Font("Comic Sans MS", Font.PLAIN, 16));
 frame.getContentPane().add(r);
 frame.pack(); frame.setVisible(true);
} }

Summary

● Drawing can be performed using graphics objects
○ A graphics context (Graphics2D)
○ Strokes, Fonts, Colors...
○ Shape objects that can be drawn or filled

● Custom components can be created by overriding the
method paintComponent(Graphics g) of a widget

References:
● The Java Tutorials: 2D Graphics.

http://docs.oracle.com/javase/tutorial/2d/
● The Java Tutorials: Performing custom painting. http:

//docs.oracle.com/javase/tutorial/uiswing/painting/

http://docs.oracle.com/javase/tutorial/2d/
http://docs.oracle.com/javase/tutorial/2d/
http://docs.oracle.com/javase/tutorial/uiswing/painting/
http://docs.oracle.com/javase/tutorial/uiswing/painting/
http://docs.oracle.com/javase/tutorial/uiswing/painting/

