
Swing and MVC S1 2015

CompSci 230

Software Construction

Learning Goals

COMPSCI 230: Swing MVC2

 You will learn an architectural design pattern: the MVC

 You will start to understand why high-level design is important

 You will learn how Swing implements MVC

 You will start to understand why architecture is an art, not a science.

Swing

COMPSCI 230: Swing MVC3

 “The overall goal for the Swing project was:
 To build a set of extensible GUI components to enable developers to more rapidly develop powerful

Java front ends for commercial applications.

 “To this end, the Swing team established a set of design goals early in the project that
drove the resulting architecture. These guidelines mandated that Swing would:

1. Be implemented entirely in Java to promote cross-platform consistency and easier
maintenance.

2. Provide a single API capable of supporting multiple look-and-feels so that developers and
end-users would not be locked into a single look-and-feel.

3. Enable the power of model-driven programming without requiring it in the highest-level
API.

4. Adhere to JavaBeansTM design principles to ensure that components behave well in IDEs
and builder tools.

5. Provide compatibility with AWT APIs where there is overlapping, to leverage the AWT
knowledge base and ease porting.”

[Amy Fowler, “A Swing Architecture Overview”, Sun Microsystems, 2002. A corrupted version is available at
http://www.oracle.com/technetwork/java/architecture-142923.html, April 2015. Archival version:
http://web.archive.org/web/20020809043740/http://java.sun.com/products/jfc/tsc/articles/architecture/index.html.]

http://www.oracle.com/technetwork/java/architecture-142923.html
http://web.archive.org/web/20020809043740/http:/java.sun.com/products/jfc/tsc/articles/architecture/index.html

Pluggable look and feel

COMPSCI 230 Software

Design & Construction

4

With a Swing application, it is
possible to change the look-

and-feel at run-time.

What technique do you think
has been used in implementing

this feature?

JButton

setUI(delegate : ButtonUI) : void

<< interface >>
ButtonUI

paint(g : Graphics) : void

Implemented by one
class for each

different look-and-
feel, e.g. Windows,

Metal, Motif.

Swing’s Model-based Architecture

COMPSCI 230: Swing MVC5

 “Swing architecture is rooted in the model-view-controller (MVC)

design that dates back to SmallTalk.

 “MVC architecture calls for a visual application to be broken up

into three separate parts:

 A model that represents the data for the application

 The view that is the visual representation of that data

 A controller that takes user input on the view and translates that to

changes in the model.”

[Amy Fowler, ibid.]

MVC: According to Wikipedia

COMPSCI 230: Swing MVC6

 A controller can send commands to the model to
update the model's state (e.g., editing a document).
 It can also send commands to its associated view to

change the view's presentation of the model (e.g., by
scrolling through a document).

 Amodel notifies its associated views and controllers
when there has been a change in its state.
 This notification allows the views to produce updated

output, and the controllers to change the available set of
commands.

 In some cases an MVC implementation may instead be
'passive' and other components must poll the model for
updates rather than being notified.

 A view requests information from the model that it
uses to generate an output representation to the
user.

[http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller]

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

Spaghetti Code vs Modular Design

COMPSCI 230: Swing MVC7

 Spaghetti Code

 Haphazard connections, probably grown over time

 No visible cohesive groups

 High coupling: high interaction between random

parts

 Understand it: all or nothing

 Modular System

 High cohesion within modules

 Low coupling between modules

 Modules can be understood separately

 Interaction between modules is easily-understood

and thoroughly specified

Both examples have
10 modules and 13
connections!

Architectural Design History of Swing

[Fowler, ibid.]

COMPSCI 230: Swing MVC8

 “The first Swing prototype followed a traditional MVC separation in
which each component
 had a separate model object and

 delegated its look-and-feel implementation to separate view and controller
objects.

 “I quickly discovered that this split didn’t work well in practical terms
 because the view and controller objects required a tight coupling

 (for example, it was very difficult to write a generic controller that didn’t know
specifics about the view).

 “So I collapsed these two entities into a single UI (user-interface) object,
as shown in this diagram:”

Separable Model Architecture [Fowler, ibid.]

COMPSCI 230: Swing MVC9

 “In the world of Swing, this new quasi-MVC design is sometimes

referred to as a separable model architecture.

 “Swing’s separable model design treats the model part of a

component as a separate element, just as the MVC design does.

 But Swing collapses the view and controller parts of each component into

a single UI (user-interface) object.

 “… as an application developer, you should think of a component’s

view/controller responsibilities as being handled by the generic

component class (such as Jbutton, JTree, and so on).

 The component class then delegates the look-and-feel specific aspects of

those responsibilities to the UI object that is provided by the currently

installed look-and-feel.” [Amy Fowler, ibid.]

GUI-state models, Application-data models

COMPSCI 230: Swing MVC10

 “GUI state models are interfaces that define the visual status of a GUI
control, such as

 whether a button is pressed or armed, or

 which items are selected in a list.

 “An application-data model is an interface that represents some
quantifiable data that has meaning primarily in the context of the
application, such as

 the value of a cell in a table or

 the items displayed in a list.

 “Of course, with some components, the model categorization falls
somewhere between GUI state models and application-data models …
This is the case with

 the BoundedRangeModel or

 JProgressBar. ”

Learning Goals: Review

COMPSCI 230: Swing MVC11

 You will learn an architectural design pattern: the MVC

 You will start to understand why high-level design is important

 You will learn how Swing implements MVC

 You will start to understand why architecture is an art, not a science.

