
Swing 1 S1 2015
Authors: Tim Vaughan (Theme B lecturer, S2 2014), Clark Thomborson

CompSci 230
Software Construction

Learning Goals

COMPSCI 230: Swing1 2

 You will gain a high-level understanding of GUI Frameworks which
is
 Sufficient to get you started on Assignment 2 (in Swing)
 Provides a foundation for our subsequent lectures (after break) on some

of the most-important features of AWT and Swing.

History of Graphical User Interfaces (GUIs)

COMPSCI 230: Swing1 3

 In the beginning was the Command Line Interface (CLI)
 The first GUI was developed at Xerox PARC in the early 70s.

 Desktop metaphor, mouse & keyboard, windows, menus, buttons, …
 Xerox Alto (1973-), Star (1981-).
 Not a commercial success, but is the basis for all subsequent GUIs.

 First commercially-successful GUI on personal computers:
 Apple Macintosh (1984-).

1960s mouse
(Engelbart)

 The X Window System (version 11, released 1987)
ran on many platforms including Unix workstations,
PCs, Macs.
 “… an architecture-independent system for remote

graphical user interfaces and input device capabilities.
 “Each person using a networked terminal has the

ability to interact with the display with any type of
user input device.” [Wikipedia]

 Windows 3.0 (1990-)
 This was Microsoft’s first successful GUI-based OS.

http://en.wikipedia.org/wiki/X_Window_System

WIMPs

COMPSCI 230: Swing1 4

 “In a WIMP system:
 A window runs a self-contained program, isolated from other programs that (if

in a multi-program operating system) run at the same time in other windows.
 An icon acts as a shortcut to an action the computer performs (e.g. execute a

program …).
 A menu is a text or icon-based selection system that selects and executes

programs or tasks.
 The pointer is an onscreen symbol that represents movement of a physical

device [which] the user controls to select icons, data elements...” [Wikipedia]
 Typical design (from PARC)
 Windowing system: handles low-level input/output (possibly over a network)
 Window Manager: takes care of placement and appearance of windows
 GUI Framework/Toolkit: software library, eases programmer’s burden.

 Icon/Widget Graphic: object with functionality e.g. button, toolbar
 Window Container: holds widgets and nested containers.
 Events/messages: How windows communicate

http://en.wikipedia.org/wiki/WIMP_(computing)

Windowing System

COMPSCI 230: Swing1 5

 Manages input and output devices
 e.g. graphics cards, screens, mice, keyboards,

 Sends input events from input devices to apps,
 Receives and processes drawing commands from apps.

 May interact with remote applications.
 X11 (1987-), Microsoft Remote Desktop Connection (1997-), Apple Remote

Desktop (2002-).

GUI Input Events

COMPSCI 230: Swing1 6

 Primitive Pointer Events
 Mouse Moved
 Mouse Down
 Mouse Up

 Primitive Keyboard Events
 Key down
 Key up

 Complex Pointer Events
 Click: mouse down, mouse up
 Double Click: two clicks within a certain time
 Enter: mouse moves into a region
 Leave: mouse moves out of a region
 Hover: mouse stays in a region for a time
 Drag and Drop: mouse down, mouse moved, mouse up

Event Handlers

COMPSCI 230: Swing1 7

 Input events are routed through the windowing system, and then the GUI
framework, to an event listener (a.k.a. event handler) of a widget (a.k.a.
Swing Component, JavaFX control, ActiveX control, …)
 Keyboard and mouse events are sent to the active (“focus”) window.

 Focus is usually selected by the user, but may be forced by the OS.
 Within a window, a mouse event is usually routed to the widget that is displayed at the position

of the mouse.

 Widget methods (of an appropriate type-signature) must be registered as event
handlers with the GUI framework – otherwise no events will be routed to
them.
 Handler registration: A reference to an event-handling method is passed as an

argument, in a method call to an event dispatcher.
 Handler callback: an event dispatcher invokes a registered handler.

 App developers write event handlers which invoke application logic.
 A mouse-click event could be handled by a “Save As” button. This handler method

might enter a file-write task on a work-queue, then exit.
 Event handlers should never perform lengthy computations.

“Painting” of Widgets

COMPSCI 230: Swing1 8

 Widgets have a visual representation.
 Widgets must define (or inherit) a paint() method, then register it as a paint-event handler.
 When it is invoked, a paint() method should render (or “paint”) its widget on the display – by sending

commands to the windowing system. A widget is not visible to the user until it is rendered.
 Paint events (a.k.a. update events) are dispatched to paint-event handlers through the GUI framework.

 Containers also have paint() methods.
 A GUI container holds widgets and other GUI containers.
 A container’s paint-event handler, when invoked, dispatches paint events to all visible widgets in the

container.
 Developers rarely have to write paint() methods for containers – the implementations in the GUI

framework should dispatch paint events to anything that is inserted into a GUI container using its
add() method.

 System-triggered paint events:
 Widgets must be rendered whenever the display window is resized or its visible area is changed in

some other way (e.g. because of window movement).
 Model-triggered paint events:

 The GUI framework will generate paint events whenever the user-visible state of a widget is changed
 For example, if a tick-box or menu-item has been selected, some text has been typed into a textbox,

or a widget’s setter is invoked by a developer’s code, this “change of model” will trigger a paint event.
 Goal: “the view should always correspond to the model”.
 Developers can “read the model” by querying the state of a widget (using its getters).

Repaints and invalidations

COMPSCI 230: Swing1 9

 Developers can invoke the repaint() method of a widget or container.
 This is a “nice” way to request a paint-event.
 Repaint events are queued, and are coalesced – so that repaints cause at most 100

paint-events per second per widget.
 Developers should not (in general) throw invalidation events nor should they

invoke invalidate() methods.
 The GUI framework throws invalidation events at all currently-visible containers,

whenever “their” region of the display must be repainted because of window
movements and resizings.

 The GUI framework’s default invalidation-handler for a container will throw paint
events at its contained widgets and its nested containers.
 Widgets and containers that don’t overlap the invalidated region do not receive paint() events

from an invalidation: this is an important optimisation.

A Simple Swing App

COMPSCI 230: Swing1 10

import javax.swing.*;

public class TempConvGUI {

 public static void main(String[] args) {
 String fahrString;
 double fahr, cel;

 fahrString = JOptionPane.showInputDialog("Enter the temperature in F");
 fahr = Double.parseDouble(fahrString);
 cel = (fahr - 32) * 5.0/9.0;

 JOptionPane.showMessageDialog(null,"The temperature in C is, " + cel);
 }

}

JOptionPane
inherits from
awt.Component.

A static method of the JOptionPane
class. Instantiates and paints a
container with several widgets; waits
for the user to click OK.

The user-modified portion of the GUI
model is returned as a String.

Another static method of the JOptionPane class.
Instantiates and paints a container with several
widgets; waits for the user to click OK.

HelloWorldSwing

COMPSCI 230: Swing1 11

import javax.swing.*;

public class HelloWorldSwing {

 private static void createAndShowGUI()
 {
 //Create and set up the window.
 JFrame frame = new
 JFrame("HelloWorldSwing");
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 JLabel label = new
 JLabel("Hello World");
 frame.getContentPane().add(label);

 //Display the window.
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 // Schedule a job for the event-
 // dispatching thread: creating and
 // showing this application's GUI.
 javax.swing.SwingUtilities.
 invokeLater(new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 });
 }
}

JFrame inherits from
awt.Component.

We add a JLabel to
our JFrame instance.

The initial size of our frame is just large
enough to display all of its widgets.

HelloWorldSwing

COMPSCI 230: Swing1 12

import javax.swing.*;

public class HelloWorldSwing {

 private static void createAndShowGUI()
 {
 //Create and set up the window.
 JFrame frame = new
 JFrame("HelloWorldSwing");
 frame.setDefaultCloseOperation(
 JFrame.EXIT_ON_CLOSE);

 JLabel label = new
 JLabel("Hello World");
 frame.getContentPane().add(label);

 //Display the window.
 frame.pack();
 frame.setVisible(true);
 }

 public static void main(String[] args) {
 // Schedule a job for the event-
 // dispatching thread: creating and
 // showing this application's GUI.
 javax.swing.SwingUtilities.
 invokeLater(new Runnable() {
 public void run() {
 createAndShowGUI();
 }
 });
 }
}

A frame doesn’t have to be visible! The widgets in
an invisible window will respond to method-calls.

The main() thread exits
normally, but another thread
executes the run() method in
an anonymous class.

The GUI Event Loop

COMPSCI 230: Swing1 13

1. Application is started in its main().
2. Widgets are instantiated; their event-handlers are

registered.
3. Event loop is started.

a) Usually main() is terminated at this point. The GUI
Framework is now in control! However the developer “sets
the stage” in steps 1 and 2, so that the actors (the widgets and
other objects) will respond appropriately to incoming events.

4. The GUI Framework waits until there’s something (e.g. a
mouse-click report from the Windowing System) in its
event queue.

5. The GUI Framework’s event-dispatcher removes an event
from the event queue, dispatches it to the appropriate
handler, and returns to step 4.

a) Most input events from the Windowing System will cause a
cascade of internal events to occur within the GUI Framework,
because many event-handlers will put additional events on the
event queue.

“Inversion of Control”

“Event Driven Programming”

Window Manager

COMPSCI 230: Swing1 14

 Definition by functionality: A window manager is any software which…
 Controls the placement and appearance of all windows (but not the window contents) on all window-

level operations (open, close, minimize, maximize, move, resize)
 While relying on the application (which is probably running a GUI Framework) to paint a window’s contents after the

Window Manager has determined its position and visibility; and which
 Is directly involved in starting and stopping GUI apps, and in handling window-focus events.

 Note that these events determine which app is responsible for determining what should be displayed in a window..

 This definition is not entirely satisfactory, because the functionality of a window manager (as
defined above) may be delivered (at least in part) by software which delivers many other
functions.
 In Windows computers, the window-management software is integrated with the operating system, so the

window manager is better described as a “cluster of features” in the OS than as a distinct software
component within the OS.
 In Apple’s OS X, different windowing systems may control different “layers” of the display, and you could be running a

different window manager on each layer. Layer management is handled by the OS, which dispatches events to the
window manager on affected layers.

 The interface between a Windowing System and a Window Manager is somewhat arbitrary.
 A window manager which enforces a standard “look and feel” by using only low-level graphic primitives, rather than

using higher-level primitives provided by native-code OS libraries such as the Win32 GUI API, is doing “some of the
work” that a Windowing System could do.

 Note: a Windowing System may also provide widgets for a GUI Framework, see e.g. Eclipse’s SWT.
 Any GUI Framework which can handle many applications simultaneously, and which doesn’t rely on an OS

for its “internally-managed windows”, is difficult to distinguish from a Window Manager.

http://en.wikipedia.org/wiki/Standard_Widget_Toolkit

Summary

COMPSCI 230: Swing1 15

 Concepts:
 Window Manager, GUI Framework, Windowing System

 As stack of (vaguely specified) functions, listed here from “high level” to “low level”
 Event-driven programming, inversion of control

 A new way to think about programming?
 The job of main() is to “set the stage”. During the actual “performance”, the GUI

Framework’s event-dispatch loop controls “what happens next”. Handlers “respond”
to events by pushing other events onto the event queue, and not by directly invoking
other methods.

 GUI Containers and Widgets
 The state of a widget is its portion of the “model”, and its paint() method should

update the user’s “view” of this state – so that the view is (nearly) always consistent
with the model.
 Anything which changes the user-relevant state of a widget should cause a paint().

 Developers don’t invoke paint() directly in their code, unless they’re implementing
custom widgets!
 The GUI Framework should generate paint-events at appropriate times, e.g. after repaint()

is invoked by an event-handler, or a Window Manager advises of an invalidated region on the
display.

Learning Goals: Review

COMPSCI 230: Swing1 16

 You will gain a high-level understanding of GUI Frameworks which
is
 Sufficient to get you started on Assignment 2 (in Swing)
 Provides a foundation for our subsequent lectures (after break) on some

of the most-important features of AWT and Swing.

	Slide Number 1
	Learning Goals
	History of Graphical User Interfaces (GUIs)
	WIMPs
	Windowing System
	GUI Input Events
	Event Handlers
	“Painting” of Widgets
	Repaints and invalidations
	A Simple Swing App
	HelloWorldSwing
	HelloWorldSwing
	The GUI Event Loop
	Window Manager
	Summary	
	Learning Goals: Review

