
Collections S1 2015

CompSci 230
Software Construction

Syllabus
 Four Themes:
 The object-oriented programming paradigm

 Object-orientation, object-oriented programming concepts and programming
language constructs – because, for many important problems, OO design is a
convenient way to express the problem and its solution in software.

 Frameworks
 Inversion of control, AWT/Swing and JUnit – because many important “sub-

problems” have already been solved: these solutions should be re-used!
 Software quality

 Testing, inspection, documentation – because large teams are designing,
implementing, debugging, maintaining, revising, and supporting complex software.

 Application-level concurrent programming
 Multithreading concepts, language primitives and abstractions – because even our

laptops have multiple CPUs. Dual-core smartphones are now available...

2 COMPSCI 230: Collections

Learning Goals for this set of slides

COMPSCI 230: Collections 3

 You will have a basic understanding of the syntax and semantics of
the Java Collection Framework
 This provides a foundation for you to develop a working understanding as

you gain practical experience through self-study and in your assignments.

 You will have a basic understanding of the advantages of a well-
designed and well-implemented framework.
 (You will not be exposed to any ill-designed or poorly-implemented

frameworks ;-)

What is a framework?

COMPSCI 230: Collections 4

 In the context of Java, the word “framework” is used loosely.
 A Java framework is any set of packages whose classes define a unified

architecture for an implementation. Examples:
 The Java Collections Framework (JCF)
 The Swing Application Framework (SAF)
 The JUnit testing framework (JUnit)

 Many computer scientists define “framework” narrowly.
 Swing and JUnit are “frameworks”, because they implement “the skeleton of an

application that can be customized by the application developer”.
 The Java Collections Framework is a “library”, because

 it is a set of closely-related classes for implementing data structures, but
 it does not provide a skeleton for an entire application.

 I will try to avoid using the word “framework” in my lectures,
 except in a proper noun: Java Collections Framework, .NET Framework, etc.

http://stackoverflow.com/questions/3057526/framework-vs-toolkit-vs-library
http://dx.doi.org.ezproxy.auckland.ac.nz/10.1145/262793.262799
http://dx.doi.org.ezproxy.auckland.ac.nz/10.1145/262793.262799

Collections, in Java

COMPSCI 230: Collections 5

 “A collection — sometimes called a container — is simply an
object that groups multiple elements into a single unit.
 Collections are used to store, retrieve, manipulate, and communicate

aggregate data.
 Typically, they represent data items that form a natural group, such as a

poker hand (a collection of cards), a mail folder (a collection of letters), or
a telephone directory (a mapping of names to phone numbers).

 If you have used the Java programming language — or just about any
other programming language — you are already familiar with collections.”

[Lesson: Introduction to Collections, The Java Tutorials]

https://docs.oracle.com/javase/tutorial/collections/intro/index.html

Collections Framework

COMPSCI 230: Collections 6

 “A collections framework is a unified architecture for representing
and manipulating collections. All collections frameworks contain the
following:
 Interfaces: These are abstract data types that represent collections.

Interfaces allow collections to be manipulated independently of the details
of their representation. In object-oriented languages, interfaces generally
form a hierarchy.

 Implementations: These are the concrete implementations of the
collection interfaces. In essence, they are reusable data structures.

 Algorithms: These are the methods that perform useful computations,
such as searching and sorting, on objects that implement collection
interfaces. The algorithms are said to be polymorphic: that is, the same
method can be used on many different implementations of the appropriate
collection interface. In essence, algorithms are reusable functionality.

Collections in Other Languages

COMPSCI 230: Collections 7

 “Apart from the Java Collections Framework, the best-known examples
of collections frameworks are
 the C++ Standard Template Library (STL) and
 Smalltalk's collection hierarchy.”

 I wouldn’t expect The Java Tutorials to discuss a competitor’s product!
However I’d say:
 The System.Collections and System.Collections.Generic

namespaces in the Base Class Library of the .NET Framework are very
comparable to the JCF.

 Only a few data structures are standardised in Python. Pythonistas write
wrappers to use libraries from other languages.

 If a programming language does not offer well-designed and well-
implemented libraries for collections, then programming is much more
time-consuming and error-prone.
 Readability and maintainability are greatly improved by standardised data

structures and algorithms.

http://kmike.ru/python-data-structures/

Sales Pitch for the JCF

COMPSCI 230: Collections 8

 Reduces programming effort:
 By providing useful data structures and algorithms, the Collections Framework frees you to concentrate on the

important parts of your program rather than on the low-level "plumbing" required to make it work. By facilitating
interoperability among unrelated APIs, the Java Collections Framework frees you from writing adapter objects or
conversion code to connect APIs.

 Increases program speed and quality:
 This Collections Framework provides high-performance, high-quality implementations of useful data structures and

algorithms. The various implementations of each interface are interchangeable, so programs can be easily tuned by
switching collection implementations. Because you're freed from the drudgery of writing your own data structures, you'll
have more time to devote to improving programs' quality and performance.

 Allows interoperability among unrelated APIs:
 The collection interfaces are the vernacular by which APIs pass collections back and forth. If my network administration

API furnishes a collection of node names and if your GUI toolkit expects a collection of column headings, our APIs will
interoperate seamlessly, even though they were written independently.

 Reduces effort to learn and to use new APIs:
 Many APIs naturally take collections on input and furnish them as output. In the past, each such API had a small sub-API

devoted to manipulating its collections. There was little consistency among these ad hoc collections sub-APIs, so you had
to learn each one from scratch, and it was easy to make mistakes when using them. With the advent of standard
collection interfaces, the problem went away.

 Reduces effort to design new APIs:
 This is the flip side of the previous advantage. Designers and implementers don't have to reinvent the wheel each time

they create an API that relies on collections; instead, they can use standard collection interfaces.
 Fosters software reuse:

 New data structures that conform to the standard collection interfaces are by nature reusable. The same goes for new
algorithms that operate on objects that implement these interfaces.

https://docs.oracle.com/javase/tutorial/collections/intro/index.html

Overview of the JCF Class Hierarchy
 Collection Interface

 A collection represents a group of objects, known as its elements
 List Interface

 An ordered collection. The user can access elements by their integer index (position in the list), and
search for elements in the list.

COMPSCI 230: Collections 9

 ArrayList
 Resizable-array

implementation of the List
interface

 Implements the size, isEmpty,
get, set, iterator, and
listIterator methods

 LinkedList
 Doubly-linked list

implementation of the List.
 Implements the size, isEmpty,

get, set, iterator, and
listIterator methods

JCF: Core Interfaces

COMPSCI 230: Collections 10

 “The core collection interfaces encapsulate different types of
collections, which are shown in the figure below.
 These interfaces allow collections to be manipulated independently of the

details of their representation.”

Generic Types in JCF

COMPSCI 230: Collections 11

 “… all the core collection interfaces are generic. For example, this
is the declaration of the Collection interface.
 public interface Collection<E> …

 The <E> syntax tells you that the interface is generic.
 When you declare a Collection instance you can and should specify

the type of object contained in the collection.
 Specifying the type allows the compiler to verify (at compile-time) that

the type of object you put into the collection is correct, thus reducing
errors at runtime.”

 In this offering of CompSci 230, I will not cover the formal

semantics of generic types in Java – you’ll learn by example.

List versus List<T>

COMPSCI 230: Collections 12

 Nice:

 Nicer (due to better type-checking, and less type-casting):

 Note: lists in Java are indexed from 0. This convention is a legacy from
the C language.
 Arrays in Java are also indexed from 0.
 Indexing from 1 may seem more natural.
 If you’re importing multiple packages, do they all have the same conventions?

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(0);

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(0);

The Collection Interface

COMPSCI 230: Collections 13

 “The Collection interface is used to pass around collections of
objects where maximum generality is desired.

 For example, by convention all general-purpose collection
implementations have a constructor that takes a Collection argument.
 This constructor, known as a conversion constructor, initializes the new

collection to contain all of the elements in the specified collection, whatever the
given collection's subinterface or implementation type.

 In other words, it allows you to convert the collection's type.

 Suppose, for example, that you have a Collection<String> c, which
may be a List, a Set, or another kind of Collection.
 [The following] idiom creates a new ArrayList (an implementation of the
List interface), initially containing all the elements in c.

 List<String> list = new ArrayList<String>(c);

Traversing Collections

COMPSCI 230: Collections 14

 “There are three ways to traverse collections:
1. using aggregate operations
2. with the for-each construct and
3. by using Iterators.
 Aggregate Operations (not examinable!)
 In JDK 8 and later, the preferred method of iterating over a collection is to

obtain a stream and perform aggregate operations on it.
 Aggregate operations are often used in conjunction with lambda expressions to

make programming more expressive, using less lines of code.
 The following code sequentially iterates through a collection of shapes and

prints out the red objects:
 myShapesCollection.stream()
 .filter(e -> e.getColor() == Color.RED)
 .forEach(e -> System.out.println(e.getName()));

 “The for-each construct allows you to concisely traverse a
collection or array using a for loop…

 The following code uses the for-each construct to print out each
element of a collection on a separate line.

 [https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html]

 Stylistic suggestion: use braces on all loops!
 See e.g. Google’s Style Guide, 4.1.1 Braces are used where optional:

 “Braces are used with if, else, for, do and while statements, even when the
body is empty or contains only a single statement.”

 {

}

 for (Object o : collection)
 System.out.println(o);

For-each iteration over a Collection

COMPSCI 230: Collections 15

https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/collection.html
https://google-styleguide.googlecode.com/svn/trunk/javaguide.htmls4.1.1-braces-always-used

Iterators

COMPSCI 230: Collections 16

 An Iterator is an object that enables you to traverse through a
collection and to remove elements from the collection selectively, if
desired.
 You get an Iterator for a collection by calling its iterator method.
 The following is the Iterator interface.
 public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove(); //optional
 }
 The hasNext method returns true if the iteration has more elements, and
 the next method returns the next element in the iteration.
 The remove method removes the last element that was returned by next from

the underlying Collection.
 The remove method may be called only once per call to next and throws an

exception if this rule is violated.

Modifying a collection

COMPSCI 230: Collections 17

 Note that Iterator.remove() is the only safe way to modify a
collection during iteration;
 the behavior [of an iteration] is unspecified if the underlying collection is

modified in any other way while the iteration is in progress.

 Use Iterator instead of the for-each construct when you need
to:
 Remove the current element. Note: the for-each construct hides the

iterator, so you cannot call remove() within a for-each loop.
 Iterate over multiple collections in parallel.

Filtering a collection

COMPSCI 230: Collections 18

 “The following method shows you how to use an Iterator to filter
an arbitrary Collection — that is, traverse the collection
removing specific elements.
 static void filter(Collection<?> c) {
 for (Iterator<?> it = c.iterator(); it.hasNext();)
 if (!cond(it.next()))
 it.remove();
 }

 Note the use of the wild-card type <?> in this Iterator declaration.
 You’ll be programming-by-example when you’re using generics.
 The example above is an “idiom”, that is, a common coding pattern.

Set, List, Queue, Deque

COMPSCI 230: Collections 19

 You should have learned these data structures in COMPSCI 105.
 The Java Collection Framework has very efficient implementations of these

data structures.
 You’ll have to choose an implementation!
 Sets are implemented as HashSet, TreeSet, and LinkedHashSet.
 Lists are implemented as ArrayList and LinkedList.
 Queues are implemented as LinkedList and PriorityQueue.
 Deques are implemented as LinkedList and ArrayDeque.

 I don’t expect you to memorise details of these implementations!
 You will be able to understand simple uses of the JCF, after you have worked

through some examples on your own. (You won’t learn this by listening to me!)
 You’ll make some syntax errors, especially with generics, but you should be able to

sort these out by reviewing some idioms, reading the tutorials, and bashing your way
through coding via Eclipse.

 You’ll have semantic difficulties with complex implementations and methods, but you
should already understand the basic operations on Sets and Lists – so this is mostly
review with only a few “surprises” or “quirks” (e.g. indexing from 0).

Map

COMPSCI 230: Collections 20

 “A Map is an object that maps keys to values.
 A map cannot contain duplicate keys:
 Each key can map to at most one value.
 It models the mathematical function abstraction.

 The Mapinterface includes methods for
 basic operations (such as put, get, remove, containsKey, containsValue,
size, and empty),

 bulk operations (such as putAll and clear), and
 collection views (such as keySet, entrySet, and values).

 The Java platform contains three general-
purpose Map implementations: HashMap, TreeMap, and LinkedHashMap.
 Their behavior and performance are precisely analogous to HashSet, TreeSet,

and LinkedHashSet, as described in The Set Interface section.

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html
https://docs.oracle.com/javase/tutorial/collections/interfaces/set.html

Map Interface Basic Operations

COMPSCI 230: Collections 21

 “The following program generates a frequency table of the words found in its argument list.
 The frequency table maps each word to the number of times it occurs in the argument list.

import java.util.*;
public class Freq {
 public static void main(String[] args) {
 Map<String, Integer> m = new HashMap<String, Integer>();
 // Initialize frequency table from command line
 for (String a : args) {
 Integer freq = m.get(a);
 m.put(a, (freq == null) ? 1 : freq + 1);
 }
 System.out.println(m.size() + " distinct words:");
 System.out.println(m);
 }
}

 The only tricky thing about this program is the second argument of the put statement.
 That argument is a conditional expression that has the effect of setting the frequency to

 one if the word has never been seen before or
 one more than its current value if the word has already been seen.

 Try running this program with the argument…” (I strongly encourage you to do this! ;-)

https://docs.oracle.com/javase/tutorial/collections/interfaces/map.html

Have you achieved these learning goals?

COMPSCI 230: Collections 22

 You will have a basic understanding of the syntax and semantics of
the Java Collection Framework
 This provides a foundation for you to develop a working understanding as

you gain practical experience through self-study and in your assignments.

 You will have a basic understanding of the advantages of a well-
designed and well-implemented framework.
 (You will not be exposed to any ill-designed or poorly-implemented

frameworks ;-)

	Slide Number 1
	Syllabus
	Learning Goals for this set of slides
	What is a framework?
	Collections, in Java
	Collections Framework
	Collections in Other Languages
	Sales Pitch for the JCF
	Overview of the JCF Class Hierarchy
	JCF: Core Interfaces
	Generic Types in JCF
	List versus List<T>
	The Collection Interface
	Traversing Collections
	For-each iteration over a Collection
	Iterators
	Modifying a collection
	Filtering a collection
	Set, List, Queue, Deque
	Map
	Map Interface Basic Operations
	Have you achieved these learning goals?

