
Java Implementation: Part 3 S1 2015

CompSci 230
Software Construction

Agenda

COMPSCI 230: Impl3 2

 Topics:
 Enum Types
 Object: a superclass
 Memory allocation
 An OO description of Java’s type system

 Reading, in The Java Tutorials:
 Enum Types and Nested Classes pages, in the Classes and Objects Lesson.
 Object as a Superclass page, in the Interface and Inheritance Lesson.

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

Enum Types

COMPSCI 230: S7 3

 “An enum type is a special data type that enables for [sic] a variable to be a set of
predefined constants.
 The variable must be equal to one of the values that have been predefined for it.
 Common examples include

 compass directions (values of NORTH, SOUTH, EAST, and WEST) and
 the days of the week.

 “Because they are constants, the names of an enum type's fields are in uppercase letters.
 “… you define an enum type by using the enum keyword.

 For example, you would specify a days-of-the-week enum type as:

 “You should use enum types any time you need to represent a fixed set of constants.
 That includes natural enum types such as the planets in our solar system and
 data sets where you know all possible values at compile time—for example,

 the choices on a menu,
 command line flags, and so on.”

public enum Day {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

Example of enum usage; switch syntax

COMPSCI 230: S7 4

public class EnumTest {
 Day day;

 public EnumTest(Day day) { this.day = day; }

 public void tellItLikeItIs() {
 switch (day) {
 case MONDAY:
 System.out.println("Mondays are bad.");
 break;
 case FRIDAY:
 System.out.println("Fridays are better.");
 break;
 case SATURDAY:
 case SUNDAY:
 System.out.println("Weekends are best.");
 break;
 default:
 System.out.println("Midweek days are so-so.");
 break;
 }
 }

Remainder of the EnumTest class

COMPSCI 230: Impl3 5

 public static void main(String[] args) {
 EnumTest firstDay = new EnumTest(Day.MONDAY);
 firstDay.tellItLikeItIs();
 EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);
 thirdDay.tellItLikeItIs();
 EnumTest fifthDay = new EnumTest(Day.FRIDAY);
 fifthDay.tellItLikeItIs();
 EnumTest sixthDay = new EnumTest(Day.SATURDAY);
 sixthDay.tellItLikeItIs();
 EnumTest seventhDay = new EnumTest(Day.SUNDAY);
 seventhDay.tellItLikeItIs();
 }
} Mondays are bad.

Midweek days are so-so.
Fridays are better.
Weekends are best.
Weekends are best.

Output:

Importing static members of a class

COMPSCI 230: S7 6

 Importing the static members of an enum may significantly reduce
“code clutter”, because you won’t have to fully qualify their names.
 However a static import may decrease readability, if the reader has

trouble figuring out “which class defined this member.”
package enumtest;

public class EnumTest {
 enum Day { // note: this is a “nested inner class”
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
 }
 public static void main(String[] args) {
 (new EnumTest(Day.MONDAY)).tellItLikeItIs();
 (new EnumTest(Day.WEDNESDAY)).tellItLikeItIs();
 (new EnumTest(Day.FRIDAY)).tellItLikeItIs();
 (new EnumTest(Day.SATURDAY)).tellItLikeItIs();
 (new EnumTest(Day.SUNDAY)).tellItLikeItIs();
 }

Importing static members of a class

COMPSCI 230: S7 7

 Importing the static members of an enum may significantly reduce
“code clutter”, because you won’t have to fully-qualify their names.
 However a static import may decrease readability, if the reader has

trouble figuring out “which class defined this member.”
package enumtest;
import static enumtest.EnumTest.Day.*;
public class EnumTest {
 enum Day { // note: this is a “nested inner class”
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
 }
 public static void main(String[] args) {
 (new EnumTest(MONDAY)).tellItLikeItIs();
 (new EnumTest(WEDNESDAY)).tellItLikeItIs();
 (new EnumTest(FRIDAY)).tellItLikeItIs();
 (new EnumTest(SATURDAY)).tellItLikeItIs();
 (new EnumTest(SUNDAY)).tellItLikeItIs();
 }

Switch: semantics

COMPSCI 230: S7 8

 public void tellItLikeItIs() {
 switch (day) {
 case MONDAY: // Each case is labelled by one (or more) values
 // in the range of the switch variable (or expression)
 System.out.println("Mondays are bad.");
 break;
 case FRIDAY: // We don’t have to write Day.FRIDAY, because each case
 // label is a value of the same type as the switch expression.
 System.out.println("Fridays are better.");
 break; // Case statements “flow-through” if there’s no break!
 case SATURDAY: // Note the “flow-through” for this case
 case SUNDAY:
 System.out.println("Weekends are best.");
 break;
 default: // You’ll get a runtime error if there’s no matching case
 // but default matches any value of the switch expression
 System.out.println("Midweek days are so-so.");
 break;
} } } // https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

Object – this is what your classes extend!

COMPSCI 230: S7 9

 When you define a class in Java without specifying what class you’re extending,
you’re actually extending the Object class.
 The Object as a Superclass lesson briefly discusses six of the methods which your

classes inherit from Object.
 protected Object clone() throws CloneNotSupportedException

 Creates and returns a copy of this object.
 public boolean equals(Object obj)

 Indicates whether some other object is “equal to” this one.
 protected void finalize() throws Throwable

 Called by the garbage collector on an object when garbage collection determines
that there are no more references to the object

 public final Class getClass()
 Returns the runtime class of an object.

 public int hashCode()
 Returns a hash code value for the object.

 public String toString()
 Returns a string representation of the object.

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

Overriding toString()

COMPSCI 230: S7 10

 “You should always consider overriding the toString() method
in your classes.

 “The Object’s toString() method returns a String
representation of the object, which is very useful for debugging.
 The String representation for an object depends entirely on the object,

which is why you need to override toString() in your classes.”

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

Overriding equals()

COMPSCI 230: S7 11

 The equals() method compares two objects for equality and
returns true if they are equal.
 The equals() method provided in the Object class uses the identity

operator (==) to determine whether two objects are equal.
 For primitive data types, this gives the correct result.
 For objects, however, it does not.

 The equals() method provided by Object tests whether the
object references are equal—that is, if the objects compared are
the exact same object.
 To test whether two objects are equal in the sense of equivalency

(containing the same information), you must override the equals()
method.

Example: overriding equals()

COMPSCI 230: S7 12

public class Book {
 String Title;
 String Author;
 String Publisher;
 String Year;
 String ISBN;
 ...
 public boolean equals(Object obj) {
 if (obj instanceof Book)
 return ISBN.equals(((Book) obj).getISBN());
 else
 return false;
 }
 }
 ...
 }

Example: overriding equals()

COMPSCI 230: S7 13

public class Book {
 String Title;
 String Author;
 String Publisher;
 String Year;
 String ISBN;
 ...
 @Override // This annotation suppresses error messages from the
 // Java compiler, and it improves readability.
 public boolean equals(Object obj) { // Note: the same signature
 // as Object.equals(), but with a different implementation
 if (obj instanceof Book)
 return ISBN.equals(((Book) obj).getISBN());
 else
 return false;
 }
 }
 ...

Example: testing an overridden equals()

COMPSCI 230: S7 14

 public static void main(String[] args){
 Book firstBook = new Book("0201914670");
 Book secondBook = new Book("0201914670");
 if (firstBook.equals(secondBook)) {
 System.out.println("equivalent objects");
 } else {
 System.out.println("non-equivalent objects");
 }
 if (firstBook == secondBook){
 System.out.println("two references to the same object");
 } else {
 System.out.println("references to different objects");
 }
 }
}

Memory Allocation

COMPSCI 230: S7 15

 Recall: we use a reference variable to refer to instances of a
class.
 The value in a reference variable is, essentially, a pointer to an

object.
 A special value (null) indicates that there is no object

corresponding to this reference.
 The runtime system (the JVM) interprets a reference value as an

index into a heap.
 The new operator allocates sufficient memory on the heap to store

all of the fields of an object of the requested type.
 Formally: the range of allowable values for a reference variable

is its reference type.
 The reference type of o1 is Object. This means it can point to any

instance of Object, or to any instance of any subclass of Object.
 Java also has primitive variables.

 These have a primitive type, such as int.
 They don’t refer to objects.

 In Java, a reference type is a static type, and a primitive type is
also a static type.
 Static types are determined by a static analysis of the program text.
 A reference variable has a dynamic type, which is determined at

runtime by the type of the object it is referring to.

0xfe100140 :Ball

-class :Class = Ball
xPos :int = 10
yPos :int = 20
Color :Java.awt.Color = RED

int i = 20;
Ball b1
 = new Ball(10, i, Color.RED);
Object o1 = b1;

:StackFrame

i :int = 20
b1 :Ball = 0xfe100140
o1 :Object = 0xfe100140

refersTo

static types

dynamic type

A model of Java’s type system (for reference)

COMPSCI 230: S7 16

Source: Kollman, R. and Gogolla, M., “Capturing Dynamic Program Behaviour with UML
Collaboration Diagrams”, Proc. CSMR, 2001.

Review

COMPSCI 230: S7 17

 Topics in this set of slides:
 Enum types
 Object.toString(), Object.equals()
 Memory allocation
 An overview of Java’s type system

 End of Theme A: The OO Programming Paradigm
 We took a top-down approach: use-case analysis  class design  implementation.
 You learned the fundamentals of OO design theory

 You are starting to understand type systems
 You have a basic understanding of Java development (JDK, Eclipse) and Java runtime (JRE).
 You understand the difference between the static type of a reference variable (defined by its

declaration) and its dynamic type (defined by its current value)

 You have a basic proficiency in program analysis, OOD, and Java implementation
 You are able to “learn more”, if necessary, by reading, thinking, and experimenting.

	Slide Number 1
	Agenda
	Enum Types
	Example of enum usage; switch syntax
	Remainder of the EnumTest class
	Importing static members of a class
	Importing static members of a class
	Switch: semantics
	Object – this is what your classes extend!
	Overriding toString()
	Overriding equals()
	Example: overriding equals()
	Example: overriding equals()
	Example: testing an overridden equals()
	Memory Allocation
	A model of Java’s type system (for reference)
	Review

