
Java Implementation: Part 3  S1 2015 
 

CompSci 230 
Software Construction 



Agenda 

COMPSCI 230: Impl3 2 

 Topics: 
 Enum Types 
 Object: a superclass 
 Memory allocation 
 An OO description of Java’s type system 

 Reading, in The Java Tutorials: 
 Enum Types and Nested Classes pages, in the Classes and Objects Lesson. 
 Object as a Superclass page, in the Interface and Inheritance Lesson. 

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html


Enum Types 

COMPSCI 230: S7 3 

 “An enum type is a special data type that enables for [sic] a variable to be a set of 
predefined constants.  
 The variable must be equal to one of the values that have been predefined for it.  
 Common examples include  

 compass directions (values of NORTH, SOUTH, EAST, and WEST) and 
 the days of the week. 

 “Because they are constants, the names of an enum type's fields are in uppercase letters. 
 “… you define an enum type by using the enum keyword.    

 For example, you would specify a days-of-the-week enum type as: 
 
 
 
 

 “You should use enum types any time you need to represent a fixed set of constants.  
 That includes natural enum types such as the planets in our solar system and  
 data sets where you know all possible values at compile time—for example,  

 the choices on a menu,  
 command line flags, and so on.” 

public enum Day { 
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY, 
 THURSDAY, FRIDAY, SATURDAY 
} 



Example of enum usage; switch syntax 

COMPSCI 230: S7 4 

public class EnumTest { 
   Day day; 
 
   public EnumTest(Day day) { this.day = day; } 
 
   public void tellItLikeItIs() { 
      switch (day) { 
      case MONDAY: 
         System.out.println("Mondays are bad."); 
         break; 
      case FRIDAY: 
         System.out.println("Fridays are better."); 
         break; 
      case SATURDAY: 
      case SUNDAY: 
         System.out.println("Weekends are best."); 
         break; 
      default: 
         System.out.println("Midweek days are so-so."); 
         break; 
      } 
   } 



Remainder of the EnumTest class 

COMPSCI 230: Impl3 5 

   public static void main(String[] args) { 
      EnumTest firstDay = new EnumTest(Day.MONDAY); 
      firstDay.tellItLikeItIs(); 
      EnumTest thirdDay = new EnumTest(Day.WEDNESDAY); 
      thirdDay.tellItLikeItIs(); 
      EnumTest fifthDay = new EnumTest(Day.FRIDAY); 
      fifthDay.tellItLikeItIs(); 
      EnumTest sixthDay = new EnumTest(Day.SATURDAY); 
      sixthDay.tellItLikeItIs(); 
      EnumTest seventhDay = new EnumTest(Day.SUNDAY); 
      seventhDay.tellItLikeItIs(); 
   } 
} Mondays are bad.  

Midweek days are so-so. 
Fridays are better. 
Weekends are best.  
Weekends are best.  

Output: 



Importing static members of a class 

COMPSCI 230: S7 6 

 Importing the static members of an enum may significantly reduce 
“code clutter”, because you won’t have to fully qualify their names. 
 However a static import may decrease readability, if the reader has 

trouble figuring out “which class defined this member.” 
package enumtest; 
 
public class EnumTest { 
   enum Day {  // note: this is a “nested inner class” 
      SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY 
   } 
   public static void main(String[] args) { 
      (new EnumTest(Day.MONDAY)).tellItLikeItIs(); 
      (new EnumTest(Day.WEDNESDAY)).tellItLikeItIs(); 
      (new EnumTest(Day.FRIDAY)).tellItLikeItIs(); 
      (new EnumTest(Day.SATURDAY)).tellItLikeItIs(); 
      (new EnumTest(Day.SUNDAY)).tellItLikeItIs(); 
   } 



Importing static members of a class 

COMPSCI 230: S7 7 

 Importing the static members of an enum may significantly reduce 
“code clutter”, because you won’t have to fully-qualify their names. 
 However a static import may decrease readability, if the reader has 

trouble figuring out “which class defined this member.” 
package enumtest; 
import static enumtest.EnumTest.Day.*; 
public class EnumTest { 
   enum Day {  // note: this is a “nested inner class” 
      SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY 
   } 
   public static void main(String[] args) { 
      (new EnumTest(MONDAY)).tellItLikeItIs(); 
      (new EnumTest(WEDNESDAY)).tellItLikeItIs(); 
      (new EnumTest(FRIDAY)).tellItLikeItIs(); 
      (new EnumTest(SATURDAY)).tellItLikeItIs(); 
      (new EnumTest(SUNDAY)).tellItLikeItIs(); 
   } 



Switch: semantics 

COMPSCI 230: S7 8 

   public void tellItLikeItIs() { 
      switch (day) { 
      case MONDAY: // Each case is labelled by one (or more) values 
            // in the range of the switch variable (or expression) 
         System.out.println("Mondays are bad."); 
         break;   
      case FRIDAY: // We don’t have to write Day.FRIDAY, because each case 
            // label is a value of the same type as the switch expression. 
         System.out.println("Fridays are better."); 
         break; // Case statements “flow-through” if there’s no break! 
      case SATURDAY: // Note the “flow-through” for this case 
      case SUNDAY: 
         System.out.println("Weekends are best."); 
         break; 
      default:  // You’ll get a runtime error if there’s no matching case 
            // but default matches any value of the switch expression 
         System.out.println("Midweek days are so-so."); 
         break; 
}  }  }  // https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html  

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html


Object – this is what your classes extend! 

COMPSCI 230: S7 9 

 When you define a class in Java without specifying what class you’re extending, 
you’re actually extending the Object class. 
 The Object as a Superclass lesson briefly discusses six of the methods which your 

classes inherit from Object.  
 protected Object clone() throws CloneNotSupportedException 

 Creates and returns a copy of this object. 
 public boolean equals(Object obj) 

 Indicates whether some other object is “equal to” this one. 
 protected void finalize() throws Throwable 

 Called by the garbage collector on an object when garbage collection determines 
that there are no more references to the object 

 public final Class getClass() 
 Returns the runtime class of an object. 

 public int hashCode() 
 Returns a hash code value for the object. 

 public String toString() 
 Returns a string representation of the object. 

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html


Overriding toString() 

COMPSCI 230: S7 10 

 “You should always consider overriding the toString() method 
in your classes. 

 “The Object’s toString() method returns a String 
representation of the object, which is very useful for debugging.  
 The String representation for an object depends entirely on the object, 

which is why you need to override toString() in your classes.” 

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html  

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html


Overriding equals() 

COMPSCI 230: S7 11 

 The equals() method compares two objects for equality and 
returns true if they are equal.  
 The equals() method provided in the Object class uses the identity 

operator (==) to determine whether two objects are equal.  
 For primitive data types, this gives the correct result.  
 For objects, however, it does not.  

 The equals() method provided by Object tests whether the 
object references are equal—that is, if the objects compared are 
the exact same object. 
 To test whether two objects are equal in the sense of equivalency 

(containing the same information), you must override the equals() 
method.  

 



Example: overriding equals() 

COMPSCI 230: S7 12 

public class Book { 
   String Title; 
   String Author; 
   String Publisher; 
   String Year; 
   String ISBN; 
   ...  
   public boolean equals(Object obj) { 
      if (obj instanceof Book) 
         return ISBN.equals(((Book) obj).getISBN()); 
      else 
         return false; 
      } 
   } 
   ...  
 } 

 



Example: overriding equals() 

COMPSCI 230: S7 13 

public class Book { 
   String Title; 
   String Author; 
   String Publisher; 
   String Year; 
   String ISBN; 
   ... 
   @Override // This annotation suppresses error messages from the 
   // Java compiler, and it improves readability.  
   public boolean equals(Object obj) { // Note: the same signature 
      // as Object.equals(), but with a different implementation 
      if (obj instanceof Book) 
         return ISBN.equals(((Book) obj).getISBN()); 
      else 
         return false; 
      } 
   } 
   ...  

 



Example: testing an overridden equals() 

COMPSCI 230: S7 14 

   public static void main(String[] args){ 
      Book firstBook  = new Book("0201914670"); 
      Book secondBook = new Book("0201914670"); 
      if (firstBook.equals(secondBook)) { 
         System.out.println("equivalent objects"); 
      } else { 
         System.out.println("non-equivalent objects"); 
      } 
      if (firstBook == secondBook){ 
         System.out.println("two references to the same object"); 
      } else { 
         System.out.println("references to different objects"); 
      } 
   } 
} 



Memory Allocation 

COMPSCI 230: S7 15 

 Recall: we use a reference variable to refer to instances of a 
class.   
 The value in a reference variable is, essentially, a pointer to an 

object. 
 A special value (null) indicates that there is no object 

corresponding to this reference. 
 The runtime system (the JVM) interprets a reference value as an 

index into a heap. 
 The new operator allocates sufficient memory on the heap to store 

all of the fields of an object of the requested type. 
 Formally: the range of allowable values for a reference variable 

is its reference type.  
 The reference type of o1 is Object.  This means it can point to any 

instance of Object, or to any instance of any subclass of Object. 
 Java also has primitive variables. 

 These have a primitive type, such as int. 
 They don’t refer to objects. 

 In Java, a reference type is a static type, and a primitive type is 
also a static type. 
 Static types are determined by a static analysis of the program text. 
 A reference variable has a dynamic type, which is determined at 

runtime by the type of the object it is referring to. 

0xfe100140 :Ball 

-class :Class = Ball 
xPos :int = 10 
yPos :int = 20 
Color :Java.awt.Color = RED 

int i = 20; 
Ball b1  
   = new Ball( 10, i, Color.RED ); 
Object o1 = b1; 

:StackFrame 

i :int = 20 
b1 :Ball = 0xfe100140 
o1 :Object = 0xfe100140 

refersTo 

static types 

dynamic type 



A model of Java’s type system (for reference) 

COMPSCI 230: S7 16 

Source: Kollman, R. and Gogolla, M., “Capturing Dynamic Program Behaviour with UML 
Collaboration Diagrams”, Proc. CSMR, 2001. 



Review 

COMPSCI 230: S7 17 

 Topics in this set of slides: 
 Enum types 
 Object.toString(), Object.equals() 
 Memory allocation 
 An overview of Java’s type system 
 

 End of  Theme A: The OO Programming Paradigm 
 We took a top-down approach: use-case analysis  class design  implementation. 
 You learned the fundamentals of OO design theory 

 You are starting to understand type systems 
 You have a basic understanding of Java development (JDK, Eclipse) and Java runtime (JRE). 
 You understand the difference between the static type of a reference variable (defined by its 

declaration) and its dynamic type (defined by its current value) 

 You have a basic proficiency in program analysis, OOD, and Java implementation 
 You are able to “learn more”, if necessary, by reading, thinking, and experimenting.  


	Slide Number 1
	Agenda
	Enum Types
	Example of enum usage; switch syntax
	Remainder of the EnumTest class
	Importing static members of a class
	Importing static members of a class
	Switch: semantics
	Object – this is what your classes extend!
	Overriding toString()
	Overriding equals()
	Example: overriding equals()
	Example: overriding equals()
	Example: testing an overridden equals()
	Memory Allocation
	A model of Java’s type system (for reference)
	Review

