CompSci 230
Software Construction

Java Implementation: Part 3 S1 2015

25272

. Agenda

» Topics:
» Enum Types
» Object: a superclass
» Memory allocation
» An OO description of Java’s type system

» Reading, in | he |ava Tutorials:

» Enum Types and Nested Classes pages, in the Classes and Objects Lesson.

» Object as a Superclass page, in the Interface and Inheritance Lesson.

2 COMPSCI 230: Impl3

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://docs.oracle.com/javase/tutorial/java/javaOO/nested.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

SIS

Enum Types

» “An enum type is a special data type that enables for [sic] a variable to be a set of
predefined constants.

The variable must be equal to one of the values that have been predefined for it.

Common examples include
compass directions (values of NORTH, SOUTH, EAST, and WEST) and
the days of the week.

“Because they are constants, the names of an enum type's fields are in uppercase letters.
“... you define an enum type by using the enum keyword.
For example, you would specify a days-of-the-week enum type as:
public enum Day {

SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

THE UNIVERSITY OF AUCKLANG

v v

}

“You should use enum types any time you need to represent a fixed set of constants.
That includes natural enum types such as the planets in our solar system and

data sets where you know all possible values at compile time—for example,
the choices on a menu,
command line flags, and so on.”

v

3 COMPSCI 230: S7

SIS

¥ Example of enum usage; switch syntax

public class EnumTest {
Day day;

public EnumTest(Day day) { this.day = day; }

public void tellItLikeItIs() {

switch (day) {

case MONDAY:
System.out.println("Mondays are bad.");
break;

case FRIDAY:
System.out.println("Fridays are better.");
break;

case SATURDAY:

case SUNDAY:
System.out.println("Weekends are best.");
break;

default:
System.out.println("Midweek days are so-so.");
break;

COMPSCI 230: S7

SIS

W Remainder of the EnumTest class

public static void main(String[] args) {

EnumTest
firstDay
EnumTest

thirdDay.

EnumTest

fifthDay.

EnumTest
sixthDay
EnumTest

firstDay = new EnumTest(Day.MONDAY);

.tellItLikeItIs();

thirdDay = new EnumTest(Day.WEDNESDAY);
tellItLikeItIs();

fifthDay = new EnumTest(Day.FRIDAY);
tellItLikeItIs();

sixthDay = new EnumTest(Day.SATURDAY);

.tellItLikeItIs();

seventhDay = new EnumTest(Day.SUNDAY);

seventhDay.tellItLikeItIs();

Mondays are bad.
Midweek days are so-so.
Output: Fridays are better.
Weekends are best.
Weekends are best.

COMPSCI 230: Impl3

SIS

,,,,,,,,,,,,,,,,, . Importing static members of a class

» Importing the static members of an enum may significantly reduce
“code clutter”, because you won'’t have to fully qualify their names.

However a static import may decrease readability, if the reader has
trouble figuring out “which class defined this member.”

package enumtest;

public class EnumTest {
enum Day { // note: this is a “nested inner class”
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
public static void main(String[] args) {
(new EnumTest(Day.MONDAY)).tellItLikReItIs();
(new EnumTest(Day.WEDNESDAY)).tellItLiReItIs();
(new EnumTest(Day.FRIDAY)).tellItLikReItIs();
(new EnumTest(Day.SATURDAY)).tellItLikeItIs();
(new EnumTest(Day.SUNDAY)).tellItLikeItIs();

6 COMPSCI 230: S7

SIS

,,,,,,,,,,,,,,,,, . Importing static members of a class

» Importing the static members of an enum may significantly reduce
“code clutter”, because you won'’t have to fully-qualify their names.

However a static import may decrease readability, if the reader has
trouble figuring out “which class defined this member.”

package enumtest;
import static enumtest.EnumTest.Day.*;
public class EnumTest {
enum Day { // note: this is a “nested inner class”
SUNDAY, MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY
}
public static void main(String[] args) {
(new EnumTest(MONDAY)).tellItLikeItIs();
(new EnumTest(WEDNESDAY)).tellItLikeItIs();
(new EnumTest(FRIDAY)).tellItLikeItIs();
(new EnumTest(SATURDAY)).tellItLikReItIs();
(new EnumTest(SUNDAY)).tellItLikeItIs();

7 COMPSCI 230: S7

£R/ASA

WY Switch: semantics

public void tellItLikeItIs() {
switch (day) {
case MONDAY: // Each case is labelled by one (or more) values
// in the range of the switch variable (or expression)
System.out.println("Mondays are bad.");
break;
case FRIDAY: // We don’t have to write Day.FRIDAY, because each case
// label is a value of the same type as the switch expression.
System.out.println("Fridays are better.");
break; // Case statements “flow-through” if there’s no break!
case SATURDAY: // Note the “flow-through” for this case
case SUNDAY:
System.out.println("Weekends are best.");
break;
default: // You’ll get a runtime error if there’s no matching case
// but default matches any value of the switch expression
System.out.println("Midweek days are so-so.");
break;

% }----}---//--https://does.oracle.com/javasettutorial/java/nutsandbolts/switchhtml
COMPSCI 230: S7

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html

SIS

¥ Object — this is what your classes extend!

THE UNIVER:
| hew ziaano)

4

When you define a class in Java without specifying what class you’re extending,
you’re actually extending the Object class.

The lesson briefly discusses six of the methods which your
classes inherit from

protected Object clone() throws CloneNotSupportedException
Creates and returns a copy of this object.

public boolean equals(Object obj)
Indicates whether some other object is “equal to” this one.

protected void finalize() throws Throwable

Called by the garbage collector on an object when garbage collection determines
that there are no more references to the object

public final Class getClass()
Returns the runtime class of an object.
public int hashCode()
Returns a hash code value for the object.
public String toString()

Returns a string representation of the object.
COMPSCI 230: S7

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html
http://docs.oracle.com/javase/8/docs/api/java/lang/Object.html

SIS

¥ Overriding toString()

» “You should always consider overriding the toString() method
in your classes.

» “The Object’s toString() method returns a String
representation of the object, which is very useful for debugging.

The String representation for an object depends entirely on the object,
which is why you need to override toString() in your classes.”

10 COMPSCI 230: S7

http://docs.oracle.com/javase/tutorial/java/IandI/objectclass.html

SIS

¥ Overriding equals()

» The equals () method compares two objects for equality and
returns true if they are equal.

The equals () method provided in the Object class uses the identity
operator (==) to determine whether two objects are equal.

For primitive data types, this gives the correct result.
For objects, however, it does not.
» The equals() method provided by Object tests whether the
object references are equal—that is, if the objects compared are
the exact same object.

To test whether two objects are equal in the sense of equivalency
(containing the same information), you must override the equals()

method.

11 COMPSCI 230: S7

SIS

¥ Example: overriding equals()

public class Book {
String Title;
String Author;
String Publisher;
String Year;
String ISBN;

public boolean equals(Object obj) {
if (obj instanceof Book)
return ISBN.equals(((Book) obj).getISBN());
else
return false;

¥

12 COMPSCI 230: S7

£R/ASA

¥ Example: overriding equals()

public class Book {

13

String Title;
String Author;
String Publisher;
String Year;
String ISBN;

@Override // This annotation suppresses error messages from the

// Java compiler, and it improves readability.

public boolean equals(Object obj) { // Note: the same signature
// as Object.equals(), but with a different implementation
if (obj instanceof Book)

return ISBN.equals(((Book) obj).getISBN());
else

return false;

}

COMPSCI 230: S7

SIS

¥ Example: testing an overridden equals()

public static void main(String[] args){
Book firstBook = new Book("©201914670");
Book secondBook = new Book("©201914670");
if (firstBook.equals(secondBook)) {
System.out.println("equivalent objects");
} else {
System.out.println("non-equivalent objects");
}
if (firstBook == secondBook){
System.out.println("two references to the same object");
} else {
System.out.println("references to different objects"”);

¥

14 COMPSCI 230: S7

int 1 = 20;
Ball bl

= new Ball(10, i, Color.RED);
Object ol = bl;

SIS

F_Memory Allocation

» Recall: we use a reference variable to refer to instances of a

class. :
. _ . _ . static types

The value in a reference variable is, essentially, a pointer to an —_

object. :StackFrame
A special value (null) indicates that there is no object : -
corresponding to this reference. 1 :int = 20
The runtime system (the JVM) interprets a reference value as an bl :Ball = Oxfel00140
index into a heap. -Ob-iect £
The new operator allocates sufficient memory on the heap to store ol :0bject = @xtel00140
all of the fields of an object of the requested type.

Formally: the range of allowable values for a reference variable

e refersTo
is its reference type.
The reference type of 01 is Object. This means it can point to any ;
instance of Object, or to any instance of any subclass of Object. dlrﬁmlc DiRE
Java also has primitive variables. Oxfel00140 :Ball
These have a primitive type, such as int.
They don’t refer to objects. -class :Class = Ball

In Java, a reference type is a static type, and a primitive type is xPos :int = 10
also a static type. yPos :int = 20

Static types are determined by a static analysis of the program text. Color :Java.awt.Color = RED

A reference variable has a dynamic type, which is determined at
runtime by the type of the object it is referring to.

15 COMPSCI 230: S7

SIS

@ A model of Java’s type system (for reference)

16

JavaVvalue 1

1

PrimitiveValue

NullReference

value Variable
type |1 1| declaredType
type JavaType
1 A\
pointsTo)
ReferenceValue ; JavaObject
Zﬁ ReferenceType PrimitiveType
Classinstance Array
InterfaceType ClassType ArrayType

*

conformsTo

Source: Kollman, R. and Gogolla, M.,“Capturing Dynamic Program Behaviour with UML
Collaboration Diagrams”, Proc. CSMR; 2001

COMPSCI 230: S7

SIS

¥ Review

» Topics in this set of slides:

Enum types
Object.toString(),0Object.equals()

Memory allocation
An overview of Java’s type system

» End of Theme A:The OO Programming Paradigm

We took a top-down approach: use-case analysis = class design = implementation.

You learned the fundamentals of OO design theory

You are starting to understand type systems
You have a basic understanding of Java development (JDK, Eclipse) and Java runtime (JRE).

You understand the difference between the static type of a reference variable (defined by its
declaration) and its dynamic type (defined by its current value)

You have a basic proficiency in program analysis, OOD, and Java implementation
You are able to “learn more”, if necessary, by reading, thinking, and experimenting.

17 COMPSCI 230: S7

	Slide Number 1
	Agenda
	Enum Types
	Example of enum usage; switch syntax
	Remainder of the EnumTest class
	Importing static members of a class
	Importing static members of a class
	Switch: semantics
	Object – this is what your classes extend!
	Overriding toString()
	Overriding equals()
	Example: overriding equals()
	Example: overriding equals()
	Example: testing an overridden equals()
	Memory Allocation
	A model of Java’s type system (for reference)
	Review

