
Java Implementation, Part 2 S1 2015

CompSci 230

Software Construction

Agenda

COMPSCI 230: Impl22

 Topics:

 Packages: why and how?

 Visibility, and its effect on inheritance

 Static and dynamic typing

 Object conversion, casting

 Reading:

 In The Java Tutorials:

 Controlling Access to Members of a Class, in the Classes and Objects Lesson

 The Packages Lesson

 Inheritance, in the Interfaces and Inheritance Lesson

 Reference:
 Conversions and Contexts, in the Java Language Specification, Java SE 8 Edition,

2015-02-13.

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/package/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

Packages

COMPSCI 230: Impl23

 Definition: “A package is a namespace that organizes a set of

related classes and interfaces.”

 Explanation: “Conceptually you can think of packages as being

similar to different folders on your computer.

 You might keep HTML pages in one folder, images in another, and scripts

or applications in yet another.

 Because software written in the Java programming language can be

composed of hundreds or thousands of individual classes, it makes sense

 to keep things organized by placing related classes and interfaces into packages.”

http://docs.oracle.com/javase/tutorial/java/concepts/package.html

http://docs.oracle.com/javase/tutorial/java/concepts/package.html

Packages (alternate definition)

COMPSCI 230: Impl24

 Rationale: “To make types easier to find and use, to avoid naming

conflicts, and to control access, programmers bundle groups of

related types into packages.”

 “Definition: A package is a grouping of related types providing

access protection and name space management.”

 Note that types refers to classes, interfaces, enumerations, and annotation

types.

 Enumerations and annotation types are special kinds of classes and

interfaces, respectively, so

 types are often referred to in this lesson simply as classes and interfaces.”

http://docs.oracle.com/javase/tutorial/java/package/packages.html

http://docs.oracle.com/javase/tutorial/java/package/packages.html

Creating a Package

COMPSCI 230: Impl25

 “To create a package, you

 choose a name for the package (naming conventions are discussed in the

next section) and

 put a package statement with that name at the top of every source file that

contains the types (classes, interfaces, enumerations, and annotation

types) that you want to include in the package.

 “The package statement (for example, package graphics;)

must be the first line in the source file.

 There can be only one package statement in each source file, and it

applies to all types in the file.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

One public type per file!

COMPSCI 230: Impl26

 “If you put multiple types in a single source file, only one can be public, and it must have
the same name as the source file.
 For example, you can

 define public class Circle in the file Circle.java,

 define public interface Draggable in the file Draggable.java,

 define public enum Day in the file Day.java, and so forth.

 “You can include non-public types in the same file as a public type
 (this is strongly discouraged, unless the non-public types are small and closely related to the

public type),

 but only the public type will be accessible from outside of the package.

 All the top-level, non-public types will be package private.”

 This rule makes it easy for the class loader, and the human programmer, to find the
definition for a public type.
 The name of a package determines the directory in which the files of this package should be

stored.

 The name of a public type determines the name of the file in which the type’s definition must
be found.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

The default package

COMPSCI 230: Impl27

 “If you do not use a package statement, your type ends up in an

unnamed package.

 Generally speaking, an unnamed package is only for small or temporary

applications or when you are just beginning the development process.

 Otherwise, classes and interfaces belong in named packages.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

Package naming conflicts

COMPSCI 230: Impl28

 “With programmers worldwide writing classes and interfaces using the Java
programming language,
 it is likely that many programmers will use the same name for different types.

 In fact, the previous example does just that: It defines a Rectangle class when
there is already a Rectangle class in the java.awt package.

 Still, the compiler allows both classes to have the same name if they are in different
packages.

 The fully qualified name of each Rectangle class includes the package name.
 That is, the fully qualified name of the Rectangle class in the graphics package

is graphics.Rectangle, and

 the fully qualified name of the Rectangle class in the java.awt package is
java.awt.Rectangle.

 This [syntax for fully qualified names] works well unless two independent
programmers use the same name for their packages.
 What prevents this problem [of name conflict]? Convention.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

Package naming conventions

COMPSCI 230: Impl29

 “Package names are written in all lower case to avoid conflict with

the names of classes or interfaces.

 Companies use their reversed Internet domain name to begin their

package names

 for example,com.example.mypackage for a package

named mypackage created by a programmer at example.com.

 Name collisions that occur within a single company need to be handled

by convention within that company,

 Packages in the Java language itself begin with java. or javax.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

External references

COMPSCI 230: Impl210

 “To use a public package member from outside its package, you must do
one of the following:
 Refer to the member by its fully qualified name

 Import the package member

 Import the member’s entire package.

 The fully qualified name for class C in package p is p.C
 To import class C from package p, you write import p.C

 [This allows you to refer to the class as C rather than p.C]

 To import an entire package p, you write import p.*

 Each is appropriate for different situations…”

 If you import a package which defines a class C then your code may refer
to it by its simple name, rather than its fully-qualified name, unless this
name is ambiguous:
 “If a member in one package shares its name with a member in another package

and both packages are imported, you must refer to each member by its qualified
name. ”

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

Warning: Packages are not Nested!

COMPSCI 230: Impl211

 “At first, packages appear to be hierarchical, but they are not.

 For example, the Java API includes a java.awt package, a

java.awt.color package, a java.awt.font package, and many

others that begin with java.awt.

 However, the java.awt.color package, the java.awt.font

package, and other java.awt.xxxx packages are not included in the

java.awt package.

 The prefix java.awt (the Java Abstract Window Toolkit) is used for a

number of related packages to make the relationship evident, but not to

show inclusion.”

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

Control of the “Name Space”

COMPSCI 230: Impl212

 Java gives you two major ways to control the “name space” of your

programs:

 You control the import of external names (by your import statements)

 You control the export of your names (by restricting visibility, in packages

and in inheritances).

Visibility Rules

COMPSCI 230: Impl213

Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

 “The first data column indicates whether the class itself has access to the
member defined by the access level.

 The second column indicates whether [other] classes in the same package
as the class (regardless of their parentage) have access to the member.

 The third column indicates whether subclasses of the class declared outside
this package have access to the member.

 The fourth column indicates whether all classes have access to the member.”

[The Java Tutorials, Controlling Access to a Member or Class]

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Tips on Choosing an Access Level

COMPSCI 230: Impl214

 “If other programmers use your class, you want to ensure that
errors from misuse cannot happen.

 Access levels can help you do this.

 “Use the most restrictive access level that makes sense for a
particular member.

 “Use private unless you have a good reason not to.

 “Avoid public fields except for constants.

 (Many of the examples in the tutorial use public fields. This may help to
illustrate some points concisely, but is not recommended for production
code.)

 Public fields tend to link you to a particular implementation and limit your
flexibility in changing your code.”

[The Java Tutorials, Controlling Access to a Member or Class]

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Inheritance and Visibility

COMPSCI 230: Impl215

 Every subclass will
 inherit all superclass members that are declared as public or protected .

 By contrast,
 private members are not inherited (but may be accessible through super.)

 The default visibility is “package-private” – inherited by subclasses within the same
package, but not inherited by subclasses that are declared outside the package.

 No subclass can
 override static methods, or

 override final methods.

 Any subclass may
 add new members (= fields or methods), or

 override any non-static, non-final method in the superclass.

 Recall from the previous slides: We say a method is overridden in a subclass,
if any of its superclasses has a method of the same signature (= name, plus
the number and types of parameters) and return type.
 Note that overriding does not absolutely prevent access. A reference to the

superclass member is still possible (e.g. with super) if this member is visible.

Statically or Dynamically typed

 Programming languages generally offer some sort of type system, and can

be described as being either statically typed or dynamically typed

 With a statically typed language, compile-time checks are carried out to

determine whether variable usage is valid. In Java:

 In a dynamically typed language, variables are not associated with a

type and are simply names that can be assigned arbitrary values. In

Python:

COMPSCI 230: Impl216

int x = 10;

x = "Hello";

x = 10

x = "Hello"

Java - a statically typed language

 Every variable name is bound

 to a static type (at compile time, by means of a data declaration), and

 either to a dynamic type or null, depending

on its current value

 The type restricts the values

that can be bound to this variable.

 int x = 2.3;

 The type also restricts the messages that can be sent using the variable.

 int x = 2; (Vector) x.add(0x37);

 Restrictions are checked at compile-time.

 The compiler will not issue code if it detects a violation.

 Java is a “type-safe” language: its compile-time checking restricts the amount of

damage that can be done by careless or malicious programmers.

COMPSCI 230: Impl217

Ball b1 = new Ball(...);

Ball b2 = null;

static

type
dynamic

type

Static Typing Restrictions

 A reference variable of static type T can refer to an instance of class T or
to an instance of any of T’s subclasses.
 A type is a restriction on the values that can be taken by a variable, and a

subclass is a stricter restriction – so there can be no type error when a value in
a subtype of T is assigned to a variable of type T.

 Through a reference variable of static type T, the set of messages that
can be sent using that variable are the methods defined by class T and its
superclasses.
 This typing rule allows inherited methods to be accessed via T, in contexts where

the names of these methods are visible.

 There might be many subclasses of T, each defining different methods with the
same name – so T can’t be used to refer to any of these subclass methods.

 Recall: a variable’s static type is fixed at compile time,
 but its dynamic type may vary at run-time.

 To learn more about static & dynamic typing from a Java perspective, see
Java Virtual Machine Support for Non-Java Languages

COMPSCI 230: Impl218

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/multiple-language-support.html

Example: Static Binding of Instance Variables

19

class Base {

public int x = 10;

}

public class Derived extends Base {

public int y = 20;

}

//Case 1:

Base b1 = new Base();

System.out.println("b1.x=" + b1.x);

b1.x=10

//Case 2:

Derived b2 = new Derived();

System.out.println("b2.x=" + b2.x);

System.out.println("b2.y=" + b2.y);

//Case 3:

Base b3 = new Derived();

System.out.println("b3.x=" + b3.x);

// System.out.println("b3.y=" + b3.y);

Instance variable x in Base.

There is no y declared in
the Base class – this
won’t compile!

b1.x=10

b2.y=20

b3 has static type Base, and dynamic type Derived.

b2 has static type Derived, and dynamic type Derived.

b3.x=10

Instance variable x
in Derived: inherited
from Base

COMPSCI 230: Impl2

Static Binding – Hiding a Field

COMPSCI 230: Impl220

 “Within a class, a field that has the same name as a field in the superclass
hides the superclass's field,

 even if their types are different.

 “Within the subclass, the field in the superclass cannot be referenced by
its simple name.

 “Instead, the field must be accessed through super, which is covered in the
next section.

 “Generally speaking, we don't recommend hiding fields as it makes code
difficult to read.” [The Java Tutorials]

class Base {

public int x = 10;

}

public class Derived extends Base {

public String x = “20”;

}

Base b3 = new Derived();

System.out.println("b3.x=" + b3.x);

Review: Fields & Variables

COMPSCI 230: Impl221

 The Java Tutorials makes a careful distinction between fields and variables.
 Not many programmers use these terms carefully.

 You won’t understand the Java Tutorials, in full technical detail, unless you understand
its definitions!

 In the Variables page of the Language Basics Lesson:
 “Instance Variables (Non-Static Fields) Technically speaking, objects store their

individual states in ‘non-static fields’, … also known as instance variables …

 “Class Variables (Static Fields) A class variable is any field declared with
the static modifier; this tells the compiler that there is exactly one copy of this
variable in existence, regardless of how many times the class has been instantiated.

 “Local Variables Similar to how an object stores its state in fields, a method will
often store its temporary state in local variables. … There is no special keyword
designating a variable as local; that determination comes entirely from the location in
which the variable is declared — which is between the opening and closing braces of
a method. As such, local variables are only visible to the methods in which they are
declared; they are not accessible from the rest of the class.

 “Parameters … The important thing to remember is that parameters are always
classified as ‘variables’ not ‘fields’. … [In addition to methods,] other parameter-
accepting constructs … [include] constructors and exception handlers …”

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

Dynamic Binding

COMPSCI 230: Impl222

 If a method is overridden, then the compiler may not be able to resolve
a reference to that method.

 The runtime search for an overridden method begins with the dynamic
type.
 If this type doesn’t implement the method (i.e. it neither introduces nor

overrides the method), then the search progresses up the hierarchy, until the
method is found.

 Static type-checking ensures that an implementation will be found (unless the
class was changed, and re-compiled, after the type-check.)

Derived b2 = new Derived();

Base b3 = new Derived();

b2.f();

class Base {

public void f() { ... }

public void g() { ... }

}

public class Derived extends Base {

public void g() { ... }

public void h() { ... }

}

Dynamic type

b2.g();

Inherited: invoke f() in Base

Overridden: invoke g() in Derived

b2.h(); Introduced: invoke h() in Derived

Dynamic Binding

COMPSCI 230: Impl223

 If a method is overridden, then the compiler may not be able to resolve a
reference to that method.

 The runtime search for an overridden method begins with the dynamic
type.
 If this type doesn’t implement the method (i.e. it neither introduces nor

overrides the method), then the search progresses up the hierarchy, until the
method is found.

 Static type-checking will ensure that an implementation will be found -- unless
the class was changed, and re-compiled, after the type-check!

Derived b2 = new Derived();

Base b3 = new Derived();

b3.f();

class Base {

public void f() { ... }

public void g() { ... }

}

public class Derived extends Base {

public void g() { ... }

public void h() { ... }

}

Dynamic type

b3.g();

b3.h();

Inherited: invoke f() in Base

Overridden: invoke g() in Derived

Out of scope: compile-time error

Conversions of Primitive Types

COMPSCI 230: Impl2

 Widening conversions
 Wider assignment, e.g. int i = 2; float x = i;

 Wider casting, e.g. int i = 2; double d = (double) i;

 Explicitly casting can make your code more readable

 Narrowing conversions
 Narrow assignment

 a compile-time error!

float f = 2.0;
int i = f;

 Narrow casting

 a loss of information!

float f = 2.0;
int i = (int) f;

24

Wider type

Casting
needed

Object Type Conversions

COMPSCI 230: Impl225

 Widening conversions
 Wider object reference assignment conversion (allowed)

 Wider object reference casting (optional: improves readability)

Base b = new Base();

Derived d = new Derived();

Base b1, b2;

System.out.println(d.y);

b1 = d;

//System.out.println(b1.y);

Base

Derived

Wider
type

b2 = (Base) d;

//System.out.println(b2.y);

Assignment conversion - OK
But no access to fields in Derived!

Widening with explicit cast - Better
Still no access to fields in Derived!

Object Types

COMPSCI 230: Impl226

 Narrowing conversions

 Narrow object reference assignment – Compile-time error!

 Narrow object reference casting – no compilatation error, but…

 The cast may throw an error at run-time, to avoid assigning an out-of-range value!

BasePerson

DerivedStudent

Wider
type

Base b = new Base();

Derived d = new Derived();

Derived d1, d2, d3;

d1 = b;

d2 = (Derived) b;

A compile-time error

Compile-time OK, Run-time ERROR
b is an instance of class Base, not Derived!

java.lang.ClassCastException: Base

Base d_as_b = new Derived();

d3 = (Derived) d_as_b;

Compile-time OK: Derived is a
narrower (more refined) type

Run-time OK:
d_as_b is an instance of Derived

Overriding, hiding, and overloading methods

COMPSCI 230: Impl227

 “An instance method in a subclass with the same signature (name, plus the
number and the type of its parameters) and return type as an instance method
in the superclass overrides the superclass's method.”

 “If a subclass defines a class method with the same signature as a class method
in the superclass, the method in the subclass hides the one in the superclass.

 “The distinction between hiding and overriding has important implications.

 The version of the overridden method that gets invoked is the one in the subclass.

 The version of the hidden method that gets invoked depends on whether it is invoked from the
superclass or the subclass.”

 “Overloaded methods are differentiated by the number and the type of the
arguments passed into the method.”

 “The compiler does not consider return type when differentiating methods, so you
cannot declare two methods [in the same class] with the same signature even if they
have a different return type.

 “Note: Overloaded methods should be used sparingly, as they can make code much
less readable.”

Review

COMPSCI 230: Impl228

 Topics:

 Packages:

 Why and how?

 What conventions should you follow?

 Four visibility keywords:

 How do they affect the scope of access to a field or method?

 Static and dynamic typing:

 When do they occur?

 What is “type-safety”?

 Object conversion, casting:

 What is allowed at compile-time?

 What might happen at run-time?

 How do they affect readability?

