CompSci 230
Software Construction

Java Implementation, Part 2 S1 2015

FR/ASA

F_ Agenda

» Topics:
Packages: why and how!?
Visibility, and its effect on inheritance
Static and dynamic typing
Object conversion, casting
» Reading:
In The Java Tutorials:
Controlling Access to Members of a Class, in the Classes and Objects Lesson

The Packages Lesson
Inheritance, in the Interfaces and Inheritance Lesson

» Reference:

Conversions and Contexts, in the Java Language Specification, |ava SE 8 Edition,
2015-02-13.

2 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/package/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

SIS

¥ _Packages

» Definition: “A package is a namespace that organizes a set of
related classes and interfaces.”

» Explanation: “Conceptually you can think of packages as being
similar to different folders on your computer.

You might keep HTML pages in one folder, images in another, and scripts
or applications in yet another.

Because software written in the Java programming language can be
composed of hundreds or thousands of individual classes, it makes sense

to keep things organized by placing related classes and interfaces into packages.”

COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/concepts/package.html

A2

2 Packages (alternate definition)

» Rationale: “To make types easier to find and use, to avoid naming
conflicts, and to control access, programmers bundle groups of
related types into packages.”

» “Definition: A package is a grouping of related types providing
access protection and name space management.”’
Note that types refers to classes, interfaces, enumerations, and annotation

types.
Enumerations and annotation types are special kinds of classes and
interfaces, respectively, so

types are often referred to in this lesson simply as classes and interfaces.”

4 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/packages.html

SIS

¥ _Creating a Package

» “To create a package, you

choose a name for the package (naming conventions are discussed in the
next section) and

put a package statement with that name at the top of every source file that
contains the types (classes, interfaces, enumerations, and annotation
types) that you want to include in the package.

» “The package statement (for example, package graphics;)
must be the first line in the source file.

There can be only one package statement in each source file,and it
applies to all types in the file.”

5 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

SIS

One public type per file!

» “If you put multiple types in a single source file, only one can be public, and it must have
the same name as the source file.

For example, you can
define public class Circle in the file Circle. java,

define public interface Draggable in the file Draggable. java,
define public enum Day in the file Day. java, and so forth.
» “You can include non-public types in the same file as a public type
(this is strongly discouraged, unless the non-public types are small and closely related to the
public type),
but only the public type will be accessible from outside of the package.
All the top-level, non-public types will be package private.”
» This rule makes it easy for the class loader, and the human programmer, to find the

definition for a public type.
The name of a package determines the directory in which the files of this package should be

stored.
The name of a public type determines the name of the file in which the type’s definition must

be found.”

COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

SIS

The default package

» “If you do not use a package statement, your type ends up in an
unnamed package.

Generally speaking, an unnamed package is only for small or temporary
applications or when you are just beginning the development process.

Otherwise, classes and interfaces belong in named packages.”

7 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

SIS

¥ _Package naming conflicts

» “With programmers worldwide writing classes and interfaces using the Java
programming language,
it is likely that many programmers will use the same name for different types.

In fact, does just that: It defines a Rectangle class when
there is already a Rectangle class in the java.awt package.

Still, the compiler allows both classes to have the same name if they are in different
packages.

» The fully qualified name of each Rectangle class includes the package name.

That is, the fully qualified name of the Rectangle class in the graphics package
is graphics.Rectangle,and

the fully qualified name of the Rectangle class in the java. awt package is
java.awt.Rectangle.

» This [syntax for fully qualified names] works well unless two independent
programmers use the same name for their packages.

What prevents this problem [of name conflict]? Convention.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
8 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

SIS

¥ _Package naming conventions

» “Package names are written in all lower case to avoid conflict with
the names of classes or interfaces.

Companies use their reversed Internet domain name to begin their
package names

for example, com. example .mypackage for a package
named mypackage created by a programmer at example.com.

Name collisions that occur within a single company need to be handled
by convention within that company,

» Packages in the Java language itself begin with java. or javax.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

9 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

External references

» ““To use a public package member from outside its package, you must do
one of the following:

Refer to the member by its fully qualified name
Import the package member
Import the member’s entire package.

» The fully qualified name for class C in package pisp.C
To import class C from package p, you write import p.C
[This allows you to refer to the class as C rather than p.C]
To import an entire package p, you write import p.*
Each is appropriate for different situations...”

» If you import a package which defines a class C then your code may refer
to it by its simple name, rather than its fully-qualified name, unless this
name is ambiguous:

“If a member in one package shares its name with a member in another package

and both packages are imported, you must refer to each member by its qualified
name.”

10 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

FR/ASA

F_Warning: Packages are not Nested!

» “At first, packages appear to be hierarchical, but they are not.
For example, the Java APl includes a java.awt package,a
java.awt.color package,a java.awt. font package,and many
others that begin with java.awt.
However, the java.awt. color package, the java.awt. font
package, and other java. awt.xxxx packages are not included in the
java.awt package.

The prefix java. awt (the Java Abstract Window Toolkit) is used for a
number of related packages to make the relationship evident, but not to
show inclusion.”

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

11 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

SIS

F_Control of the “Name Space”

» Java gives you two major ways to control the “name space” of your
programs:
You control the import of external names (by your import statements)

You control the export of your names (by restricting visibility, in packages
and in inheritances).

12 COMPSCI 230: Impl2

21221

Visibility Rules

“The first data column indicates whether the class itself has access to the
member defined by the access level.

The second column indicates whether [other] classes in the same package
as the class (regardless of their parentage) have access to the member.

The third column indicates whether subclasses of the class declared outside
this package have access to the member.

The fourth column indicates whether all classes have access to the member.’

....... [The Java Tutorials, Controlling Access to a Member or Class]

COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

SIS

ZEALAND

» “If other programmers use your class, you want to ensure that
errors from misuse cannot happen.

Access levels can help you do this.

» “Use the most restrictive access level that makes sense for a
particular member.

» “Use private unless you have a good reason not to.

» “Avoid public fields except for constants.

(Many of the examples in the tutorial use public fields. This may help to
illustrate some points concisely, but is not recommended for production

code.)

Public fields tend to link you to a particular implementation and limit your
flexibility in changing your code.”

[The Java Tutorials,]

14 COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

SIS

¥ Inheritance and Visibility

——

15

» Every subclass will
inherit all superclass members that are declared as public or protected.

» By contrast,
private members are not inherited (but may be accessible through super.)
The default visibility is “package-private” — inherited by subclasses within the same
package, but not inherited by subclasses that are declared outside the package.
» No subclass can
override static methods, or
override final methods.
» Any subclass may
add new members (= fields or methods), or
override any non-static, non-final method in the superclass.
» Recall from the previous slides: We say a method is overridden in a subclass,

if any of its superclasses has a method of the same signature (= name, plus
the number and types of parameters) and return type.

Note that overriding does not absolutely prevent access. A reference to the
superclass member is still possible (e.g. with super) if this member is visible.

COMPSCI 230: Impl2

A2

¥ _Statically or Dynamically typed

» Programming languages generally offer some sort of type system, and can
be described as being either statically typed or dynamically typed

» With a statically typed language, compile-time checks are carried out to
determine whether variable usage is valid. In Java:

int x = 10; /
X = "Hello"; %

» In a dynamically typed language, variables are not associated with a
type and are simply names that can be assigned arbitrary values. In

Python: < = 10 /

x = "Hello" /

16 COMPSCI 230: Impl2

SIS

ZEALAND

» Every variable name is bound

to a static type (at compile time, by means of a data declaration), and

elther to a dynamic type or null, depending static dynamic
on its current value type type
. N
» The type restricts the values pall bl = new Ball(...}:
that can be bound to this variable. S SR S B

int x = 2.3;

» The type also restricts the messages that can be sent using the variable.
int x = 2; (Vector) x.add (0x37) ;

» Restrictions are checked at compile-time.
The compiler will not issue code if it detects a violation.

Java is a “type-safe” language: its compile-time checking restricts the amount of
damage that can be done by careless or malicious programmers.

17 COMPSCI 230: Impl2

SIS

2 Static Typing Restrictions

» A reference variable of static type T can refer to an instance of class T or
to an instance of any of T’s subclasses.

A type is a restriction on the values that can be taken by a variable, and a
subclass is a stricter restriction — so there can be no type error when a value in
a subtype of T is assigned to a variable of type T.

» Through a reference variable of static type T, the set of messages that
can be sent using that variable are the methods defined by class T and its
superclasses.

This typing rule allows inherited methods to be accessed via T, in contexts where
the names of these methods are visible.

There might be many subclasses of T, each defining different methods with the
same name — so | can’t be used to refer to any of these subclass methods.

» Recall: a variable’s static type is fixed at compile time,
but its dynamic type may vary at run-time.

» To learn more about static & dynamic typing from a Java perspective, see

18 COMPSCI 230: Impl2

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/multiple-language-support.html

A2

—.. Lxample: Static Binding of Instance Variables

class Base ({ public class Derived extends Base ({
public int x = 10; public int y = 20;

} }

//Case 1:

Base bl = new Base(); Instance variable x in Base. bl.x=10

T
System.out.println("bl.x=" + bl.x):;

//Case 2: 2 b2 has static type Derived, and dynamic type Derived.

: _ bl.x=10

Derived b2 = new Derived() ; Instance variable x b2 .y=20

System.out.println("b2.x=" + b2.x) ;. in Derived: inherited

System.out.println("b2.y=" + b2.y); |from Base

//Case 3: 2 b3 has static type Base, and dynamic type Derived.

Base b3 = new Derived() ; 53 10
« X=

System.out.println("b3.x=" + b3.x);
// System.out.println("b3.y=" + b3OY);V

There is no y declared in
the Base class — this

won’t compile!

19 COMPYCI 230: Impl2

A2

@ Static Binding — Hiding a Field

» “Within a class, a field that has the same name as a field in the superclass
hides the superclass's field,

even if their types are different.

» “Within the subclass, the field in the superclass cannot be referenced by
its simple name.

“Instead, the field must be accessed through super, which is covered in the
next section.

» “Generally speaking, we don't recommend hiding fields as it makes code
difficult to read.” [The Java Tutorials]

class Base { public class Derived extends Base {
public int x = 10; public String x = “20”;
} }

Base b3 = new Derived() ;
System.out.println("b3.x=" + b3.x);

20 COMPSCI 230: Impl2

SIS

¥ Review: Fields & Variables

» The Java Tutorials makes a careful distinction between fields and variables.

21

In

Not many programmers use these terms carefully.

You won’t understand the Java Tutorials, in full technical detail, unless you understand
its definitions!

the Variables page of the Language Basics Lesson:

“Instance Variables (Non-Static Fields) Technically speaking, objects store their
individual states in ‘non-static fields’, ... also known as instance variables ...

“Class Variables (Static Fields) A class variable is any field declared with
the static modifier; this tells the compiler that there is exactly one copy of this
variable in existence, regardless of how many times the class has been instantiated.

“Local Variables Similar to how an object stores its state in fields,a method will
often store its temporary state in local variables. ... There is no special keyword
designating a variable as local; that determination comes entirely from the location in
which the variable is declared — which is between the opening and closing braces of
a method.As such, local variables are only visible to the methods in which they are
declared; they are not accessible from the rest of the class.

“Parameters ... The important thing to remember is that parameters are always
classified as ‘variables’ not fields’. ... [In addition to methods,] other parameter-

accepting constructs ... [include] constructors and exception handlers ...”
COMPSCI 230: Impl2

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

A2

@ Dynamic Binding

» If a method is overridden, then the compiler may not be able to resolve
a reference to that method.

» The runtime search for an overridden method begins with the dynamic
type.

If this.éype doesn’t implement the method (i.e. it neither introduces nor
overrides the method), then the search progresses up the hierarchy, until the
method is found.

Static type-checking ensures that an implementation will be found (unless the
class was changed, and re-compiled, after the type-check.)

class Base { Derived b2 = new Derived() ;
public void £() { ... } Base b3 = new Derived() ;
/\
ublic void “ e :
} = gty } Dynamic type

b2.£() ; =] Inherited: invoke f() in Base

public class Derived extends Base ({ b2.g() ;
public void g() { ... } AL ﬁ Overridden: invoke g() in Derived ‘

public void h() { ... }
}

=200) ﬁ Introduced: invoke h() in Derived ‘

22 COMPSCI 230: Impl2

SIS

2. Dynamic Binding

» If a method is overridden, then the compiler may not be able to resolve a
reference to that method.

» The runtime search for an overridden method begins with the dynamic
type.

If this 'éype doesn’t implement the method (i.e. it neither introduces nor

overrides the method), then the search progresses up the hierarchy, until the
method is found.

Static type-checking will ensure that an implementation will be found -- unless
the class was changed, and re-compiled, after the type-check!

Derived b2 = new Derived() ;

class ?ase f Base b3 = new Derived() ;
public void £() { ... } o~

public void g() { ... } Dynamic type

}

b3.£() ; =] Inherited: invoke f() in Base

public class Derived extends Base ({ b3.q() ;
public void g() { ... } AL ﬁ Overridden: invoke g() in Derived ‘

b1i id h L :
} public void h() { } b3.h() ; ﬁ Out of scope: compile-time error ‘

23 COMPSCI 230: Impl2

SIS

F_Conversions of Primitive Types

» Widening conversions
Wider assighment, e.g. int i = 2; float x = i;
Wider casting,e.g. int 1 = 2; double d = (double) 1i;
Explicitly casting can make your code more readable
» Narrowing conversions
Narrow assignment
a compile-time error!

float £ = 2.0 Widening conversions ‘\J
int 1 = £;
Narrow casting .

a loss of information! ®_.._.._..
float £ = 2.0;
int i = (int) £; .—’./

Wider type

Casting
needed

24 COMPSCI 230: Impl2

A2

F_Object Type Conversions ";’;ﬂ:r r BaTse
» Widening conversions :
Derived

Wider object reference assighment conversion (allowed)
Wider object reference casting (optional: improves readability)

Base b = new Base();
Derived d = new Derived() ;
Base bl, b2;

System.out.println(d.y) ; A/J

Assignment conversion - OK
But no access to fields in Derived!

bl = 4d;
//System.out.println(bl.y);J

Widening with explicit cast - Better

b2 = (Base) d; Still no access to fields in Derived!

//System.out.println(b2.y) ;

25 COMPSCI 230: Impl2

2/ Wider r BasePerson
@ : e

2 Object Types P T

» Narrowing conversions DerivedStudent

Narrow object reference assighment — Compile-time error!

Narrow object reference casting — no compilatation error, but...
The cast may throw an error at run-time, to avoid assigning an out-of-range value!

Base b = new Base() ; dl = b; 2 A compile-time error
Derived d = new Derived() ;

Derived dl, d2, d3;

_ : . Compile-time OK, Run-time ERROR
d2 = (Derived) b; b is an instance of class Base, not Derived!

java.lang.ClassCastException: Base

Base d as b = new Derived() ; % Compile-time OK: Derived is a
d3 = (Derived) d as b; narrower (more refined) type

Run-time OK:
d_as_b is an instance of Derived | ~ompscr 230: Impl2

26

SIS

—2.. Overriding, hiding, and overloading methods

» “An instance method in a subclass with the same signature (name, plus the
number and the type of its parameters) and return type as an instance method
in the superclass overrides the superclass's method.”

» “If a subclass defines a class method with the same signature as a class method
in the superclass, the method in the subclass hides the one in the superclass.

“The distinction between hiding and overriding has important implications.

The version of the overridden method that gets invoked is the one in the subclass.

The version of the hidden method that gets invoked depends on whether it is invoked from the
superclass or the subclass.”

» “Overloaded methods are differentiated by the number and the type of the
arguments passed into the method.”

“The compiler does not consider return type when differentiating methods, so you
cannot declare two methods [in the same class] with the same signature even if they
have a different return type.

““Note: Overloaded methods should be used sparingly, as they can make code much
less readable.”

27 COMPSCI 230: Impl2

SIS

¥ Review

» Topics:

Packages:
Why and how!?
What conventions should you follow?
Four visibility keywords:
How do they affect the scope of access to a field or method?
Static and dynamic typing:
When do they occur!?
What is “type-safety’”?
Object conversion, casting:
What is allowed at compile-time?
What might happen at run-time!?
How do they affect readability?
28 COMPSCI 230: Impl2

