
Java Implementation, Part 2 S1 2015

CompSci 230

Software Construction

Agenda

COMPSCI 230: Impl22

 Topics:

 Packages: why and how?

 Visibility, and its effect on inheritance

 Static and dynamic typing

 Object conversion, casting

 Reading:

 In The Java Tutorials:

 Controlling Access to Members of a Class, in the Classes and Objects Lesson

 The Packages Lesson

 Inheritance, in the Interfaces and Inheritance Lesson

 Reference:
 Conversions and Contexts, in the Java Language Specification, Java SE 8 Edition,

2015-02-13.

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://docs.oracle.com/javase/tutorial/java/javaOO/index.html
http://docs.oracle.com/javase/tutorial/java/package/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html
http://docs.oracle.com/javase/specs/jls/se8/html/index.html

Packages

COMPSCI 230: Impl23

 Definition: “A package is a namespace that organizes a set of

related classes and interfaces.”

 Explanation: “Conceptually you can think of packages as being

similar to different folders on your computer.

 You might keep HTML pages in one folder, images in another, and scripts

or applications in yet another.

 Because software written in the Java programming language can be

composed of hundreds or thousands of individual classes, it makes sense

 to keep things organized by placing related classes and interfaces into packages.”

http://docs.oracle.com/javase/tutorial/java/concepts/package.html

http://docs.oracle.com/javase/tutorial/java/concepts/package.html

Packages (alternate definition)

COMPSCI 230: Impl24

 Rationale: “To make types easier to find and use, to avoid naming

conflicts, and to control access, programmers bundle groups of

related types into packages.”

 “Definition: A package is a grouping of related types providing

access protection and name space management.”

 Note that types refers to classes, interfaces, enumerations, and annotation

types.

 Enumerations and annotation types are special kinds of classes and

interfaces, respectively, so

 types are often referred to in this lesson simply as classes and interfaces.”

http://docs.oracle.com/javase/tutorial/java/package/packages.html

http://docs.oracle.com/javase/tutorial/java/package/packages.html

Creating a Package

COMPSCI 230: Impl25

 “To create a package, you

 choose a name for the package (naming conventions are discussed in the

next section) and

 put a package statement with that name at the top of every source file that

contains the types (classes, interfaces, enumerations, and annotation

types) that you want to include in the package.

 “The package statement (for example, package graphics;)

must be the first line in the source file.

 There can be only one package statement in each source file, and it

applies to all types in the file.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

One public type per file!

COMPSCI 230: Impl26

 “If you put multiple types in a single source file, only one can be public, and it must have
the same name as the source file.
 For example, you can

 define public class Circle in the file Circle.java,

 define public interface Draggable in the file Draggable.java,

 define public enum Day in the file Day.java, and so forth.

 “You can include non-public types in the same file as a public type
 (this is strongly discouraged, unless the non-public types are small and closely related to the

public type),

 but only the public type will be accessible from outside of the package.

 All the top-level, non-public types will be package private.”

 This rule makes it easy for the class loader, and the human programmer, to find the
definition for a public type.
 The name of a package determines the directory in which the files of this package should be

stored.

 The name of a public type determines the name of the file in which the type’s definition must
be found.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

The default package

COMPSCI 230: Impl27

 “If you do not use a package statement, your type ends up in an

unnamed package.

 Generally speaking, an unnamed package is only for small or temporary

applications or when you are just beginning the development process.

 Otherwise, classes and interfaces belong in named packages.”

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html

Package naming conflicts

COMPSCI 230: Impl28

 “With programmers worldwide writing classes and interfaces using the Java
programming language,
 it is likely that many programmers will use the same name for different types.

 In fact, the previous example does just that: It defines a Rectangle class when
there is already a Rectangle class in the java.awt package.

 Still, the compiler allows both classes to have the same name if they are in different
packages.

 The fully qualified name of each Rectangle class includes the package name.
 That is, the fully qualified name of the Rectangle class in the graphics package

is graphics.Rectangle, and

 the fully qualified name of the Rectangle class in the java.awt package is
java.awt.Rectangle.

 This [syntax for fully qualified names] works well unless two independent
programmers use the same name for their packages.
 What prevents this problem [of name conflict]? Convention.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/createpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

Package naming conventions

COMPSCI 230: Impl29

 “Package names are written in all lower case to avoid conflict with

the names of classes or interfaces.

 Companies use their reversed Internet domain name to begin their

package names

 for example,com.example.mypackage for a package

named mypackage created by a programmer at example.com.

 Name collisions that occur within a single company need to be handled

by convention within that company,

 Packages in the Java language itself begin with java. or javax.”

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

External references

COMPSCI 230: Impl210

 “To use a public package member from outside its package, you must do
one of the following:
 Refer to the member by its fully qualified name

 Import the package member

 Import the member’s entire package.

 The fully qualified name for class C in package p is p.C
 To import class C from package p, you write import p.C

 [This allows you to refer to the class as C rather than p.C]

 To import an entire package p, you write import p.*

 Each is appropriate for different situations…”

 If you import a package which defines a class C then your code may refer
to it by its simple name, rather than its fully-qualified name, unless this
name is ambiguous:
 “If a member in one package shares its name with a member in another package

and both packages are imported, you must refer to each member by its qualified
name. ”

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

Warning: Packages are not Nested!

COMPSCI 230: Impl211

 “At first, packages appear to be hierarchical, but they are not.

 For example, the Java API includes a java.awt package, a

java.awt.color package, a java.awt.font package, and many

others that begin with java.awt.

 However, the java.awt.color package, the java.awt.font

package, and other java.awt.xxxx packages are not included in the

java.awt package.

 The prefix java.awt (the Java Abstract Window Toolkit) is used for a

number of related packages to make the relationship evident, but not to

show inclusion.”

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

http://docs.oracle.com/javase/tutorial/java/package/usepkgs.html

Control of the “Name Space”

COMPSCI 230: Impl212

 Java gives you two major ways to control the “name space” of your

programs:

 You control the import of external names (by your import statements)

 You control the export of your names (by restricting visibility, in packages

and in inheritances).

Visibility Rules

COMPSCI 230: Impl213

Access Levels

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

 “The first data column indicates whether the class itself has access to the
member defined by the access level.

 The second column indicates whether [other] classes in the same package
as the class (regardless of their parentage) have access to the member.

 The third column indicates whether subclasses of the class declared outside
this package have access to the member.

 The fourth column indicates whether all classes have access to the member.”

[The Java Tutorials, Controlling Access to a Member or Class]

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Tips on Choosing an Access Level

COMPSCI 230: Impl214

 “If other programmers use your class, you want to ensure that
errors from misuse cannot happen.

 Access levels can help you do this.

 “Use the most restrictive access level that makes sense for a
particular member.

 “Use private unless you have a good reason not to.

 “Avoid public fields except for constants.

 (Many of the examples in the tutorial use public fields. This may help to
illustrate some points concisely, but is not recommended for production
code.)

 Public fields tend to link you to a particular implementation and limit your
flexibility in changing your code.”

[The Java Tutorials, Controlling Access to a Member or Class]

http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

Inheritance and Visibility

COMPSCI 230: Impl215

 Every subclass will
 inherit all superclass members that are declared as public or protected .

 By contrast,
 private members are not inherited (but may be accessible through super.)

 The default visibility is “package-private” – inherited by subclasses within the same
package, but not inherited by subclasses that are declared outside the package.

 No subclass can
 override static methods, or

 override final methods.

 Any subclass may
 add new members (= fields or methods), or

 override any non-static, non-final method in the superclass.

 Recall from the previous slides: We say a method is overridden in a subclass,
if any of its superclasses has a method of the same signature (= name, plus
the number and types of parameters) and return type.
 Note that overriding does not absolutely prevent access. A reference to the

superclass member is still possible (e.g. with super) if this member is visible.

Statically or Dynamically typed

 Programming languages generally offer some sort of type system, and can

be described as being either statically typed or dynamically typed

 With a statically typed language, compile-time checks are carried out to

determine whether variable usage is valid. In Java:

 In a dynamically typed language, variables are not associated with a

type and are simply names that can be assigned arbitrary values. In

Python:

COMPSCI 230: Impl216

int x = 10;

x = "Hello";

x = 10

x = "Hello"

Java - a statically typed language

 Every variable name is bound

 to a static type (at compile time, by means of a data declaration), and

 either to a dynamic type or null, depending

on its current value

 The type restricts the values

that can be bound to this variable.

 int x = 2.3;

 The type also restricts the messages that can be sent using the variable.

 int x = 2; (Vector) x.add(0x37);

 Restrictions are checked at compile-time.

 The compiler will not issue code if it detects a violation.

 Java is a “type-safe” language: its compile-time checking restricts the amount of

damage that can be done by careless or malicious programmers.

COMPSCI 230: Impl217

Ball b1 = new Ball(...);

Ball b2 = null;

static

type
dynamic

type

Static Typing Restrictions

 A reference variable of static type T can refer to an instance of class T or
to an instance of any of T’s subclasses.
 A type is a restriction on the values that can be taken by a variable, and a

subclass is a stricter restriction – so there can be no type error when a value in
a subtype of T is assigned to a variable of type T.

 Through a reference variable of static type T, the set of messages that
can be sent using that variable are the methods defined by class T and its
superclasses.
 This typing rule allows inherited methods to be accessed via T, in contexts where

the names of these methods are visible.

 There might be many subclasses of T, each defining different methods with the
same name – so T can’t be used to refer to any of these subclass methods.

 Recall: a variable’s static type is fixed at compile time,
 but its dynamic type may vary at run-time.

 To learn more about static & dynamic typing from a Java perspective, see
Java Virtual Machine Support for Non-Java Languages

COMPSCI 230: Impl218

http://docs.oracle.com/javase/8/docs/technotes/guides/vm/multiple-language-support.html

Example: Static Binding of Instance Variables

19

class Base {

public int x = 10;

}

public class Derived extends Base {

public int y = 20;

}

//Case 1:

Base b1 = new Base();

System.out.println("b1.x=" + b1.x);

b1.x=10

//Case 2:

Derived b2 = new Derived();

System.out.println("b2.x=" + b2.x);

System.out.println("b2.y=" + b2.y);

//Case 3:

Base b3 = new Derived();

System.out.println("b3.x=" + b3.x);

// System.out.println("b3.y=" + b3.y);

Instance variable x in Base.

There is no y declared in
the Base class – this
won’t compile!

b1.x=10

b2.y=20

b3 has static type Base, and dynamic type Derived.

b2 has static type Derived, and dynamic type Derived.

b3.x=10

Instance variable x
in Derived: inherited
from Base

COMPSCI 230: Impl2

Static Binding – Hiding a Field

COMPSCI 230: Impl220

 “Within a class, a field that has the same name as a field in the superclass
hides the superclass's field,

 even if their types are different.

 “Within the subclass, the field in the superclass cannot be referenced by
its simple name.

 “Instead, the field must be accessed through super, which is covered in the
next section.

 “Generally speaking, we don't recommend hiding fields as it makes code
difficult to read.” [The Java Tutorials]

class Base {

public int x = 10;

}

public class Derived extends Base {

public String x = “20”;

}

Base b3 = new Derived();

System.out.println("b3.x=" + b3.x);

Review: Fields & Variables

COMPSCI 230: Impl221

 The Java Tutorials makes a careful distinction between fields and variables.
 Not many programmers use these terms carefully.

 You won’t understand the Java Tutorials, in full technical detail, unless you understand
its definitions!

 In the Variables page of the Language Basics Lesson:
 “Instance Variables (Non-Static Fields) Technically speaking, objects store their

individual states in ‘non-static fields’, … also known as instance variables …

 “Class Variables (Static Fields) A class variable is any field declared with
the static modifier; this tells the compiler that there is exactly one copy of this
variable in existence, regardless of how many times the class has been instantiated.

 “Local Variables Similar to how an object stores its state in fields, a method will
often store its temporary state in local variables. … There is no special keyword
designating a variable as local; that determination comes entirely from the location in
which the variable is declared — which is between the opening and closing braces of
a method. As such, local variables are only visible to the methods in which they are
declared; they are not accessible from the rest of the class.

 “Parameters … The important thing to remember is that parameters are always
classified as ‘variables’ not ‘fields’. … [In addition to methods,] other parameter-
accepting constructs … [include] constructors and exception handlers …”

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/variables.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

Dynamic Binding

COMPSCI 230: Impl222

 If a method is overridden, then the compiler may not be able to resolve
a reference to that method.

 The runtime search for an overridden method begins with the dynamic
type.
 If this type doesn’t implement the method (i.e. it neither introduces nor

overrides the method), then the search progresses up the hierarchy, until the
method is found.

 Static type-checking ensures that an implementation will be found (unless the
class was changed, and re-compiled, after the type-check.)

Derived b2 = new Derived();

Base b3 = new Derived();

b2.f();

class Base {

public void f() { ... }

public void g() { ... }

}

public class Derived extends Base {

public void g() { ... }

public void h() { ... }

}

Dynamic type

b2.g();

Inherited: invoke f() in Base

Overridden: invoke g() in Derived

b2.h(); Introduced: invoke h() in Derived

Dynamic Binding

COMPSCI 230: Impl223

 If a method is overridden, then the compiler may not be able to resolve a
reference to that method.

 The runtime search for an overridden method begins with the dynamic
type.
 If this type doesn’t implement the method (i.e. it neither introduces nor

overrides the method), then the search progresses up the hierarchy, until the
method is found.

 Static type-checking will ensure that an implementation will be found -- unless
the class was changed, and re-compiled, after the type-check!

Derived b2 = new Derived();

Base b3 = new Derived();

b3.f();

class Base {

public void f() { ... }

public void g() { ... }

}

public class Derived extends Base {

public void g() { ... }

public void h() { ... }

}

Dynamic type

b3.g();

b3.h();

Inherited: invoke f() in Base

Overridden: invoke g() in Derived

Out of scope: compile-time error

Conversions of Primitive Types

COMPSCI 230: Impl2

 Widening conversions
 Wider assignment, e.g. int i = 2; float x = i;

 Wider casting, e.g. int i = 2; double d = (double) i;

 Explicitly casting can make your code more readable

 Narrowing conversions
 Narrow assignment

 a compile-time error!

float f = 2.0;
int i = f;

 Narrow casting

 a loss of information!

float f = 2.0;
int i = (int) f;

24

Wider type

Casting
needed

Object Type Conversions

COMPSCI 230: Impl225

 Widening conversions
 Wider object reference assignment conversion (allowed)

 Wider object reference casting (optional: improves readability)

Base b = new Base();

Derived d = new Derived();

Base b1, b2;

System.out.println(d.y);

b1 = d;

//System.out.println(b1.y);

Base

Derived

Wider
type

b2 = (Base) d;

//System.out.println(b2.y);

Assignment conversion - OK
But no access to fields in Derived!

Widening with explicit cast - Better
Still no access to fields in Derived!

Object Types

COMPSCI 230: Impl226

 Narrowing conversions

 Narrow object reference assignment – Compile-time error!

 Narrow object reference casting – no compilatation error, but…

 The cast may throw an error at run-time, to avoid assigning an out-of-range value!

BasePerson

DerivedStudent

Wider
type

Base b = new Base();

Derived d = new Derived();

Derived d1, d2, d3;

d1 = b;

d2 = (Derived) b;

A compile-time error

Compile-time OK, Run-time ERROR
b is an instance of class Base, not Derived!

java.lang.ClassCastException: Base

Base d_as_b = new Derived();

d3 = (Derived) d_as_b;

Compile-time OK: Derived is a
narrower (more refined) type

Run-time OK:
d_as_b is an instance of Derived

Overriding, hiding, and overloading methods

COMPSCI 230: Impl227

 “An instance method in a subclass with the same signature (name, plus the
number and the type of its parameters) and return type as an instance method
in the superclass overrides the superclass's method.”

 “If a subclass defines a class method with the same signature as a class method
in the superclass, the method in the subclass hides the one in the superclass.

 “The distinction between hiding and overriding has important implications.

 The version of the overridden method that gets invoked is the one in the subclass.

 The version of the hidden method that gets invoked depends on whether it is invoked from the
superclass or the subclass.”

 “Overloaded methods are differentiated by the number and the type of the
arguments passed into the method.”

 “The compiler does not consider return type when differentiating methods, so you
cannot declare two methods [in the same class] with the same signature even if they
have a different return type.

 “Note: Overloaded methods should be used sparingly, as they can make code much
less readable.”

Review

COMPSCI 230: Impl228

 Topics:

 Packages:

 Why and how?

 What conventions should you follow?

 Four visibility keywords:

 How do they affect the scope of access to a field or method?

 Static and dynamic typing:

 When do they occur?

 What is “type-safety”?

 Object conversion, casting:

 What is allowed at compile-time?

 What might happen at run-time?

 How do they affect readability?

