
Java Implementation: Part 1 S1 2015

CompSci 230
Software Construction

Agenda

COMPSCI 230: Impl1 2

 Topics:
 Interfaces in Java
 Reference data types
 Abstract classes in Java
 Java syntax: five important keywords

 Reading
 In The Java Tutorials:

 What is an Interface?, in the Object-Oriented Programming Concepts Lesson
 The Interfaces and Inheritance Lesson

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/concepts/interface.html
http://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

Learning objectives: Java Implementation

COMPSCI 230: Impl1 3

 Students will be competent at implementing OO designs in Java
 Interfaces, reference data types, abstract classes, intro to generics
 Visibility, packages, static & dynamic typing, conversion & casting

 The lectures will give you the basic “theory”, but they won’t give

you a “working understanding” – you have to do the hard-yards of
putting these ideas into practice.
 You won’t even understand the theory, if you listen passively to lectures.

I’ll try to help you “learn how to learn” from the Java tutorials.
 You’ll get many chances to develop your understanding in your lab

assignments for this course.

Interfaces, in UML

COMPSCI 230: Impl1 4

 Interfaces specify behaviour (a public
contract), without data or
implementation.

 Interfaces are drawn like classes, but
without attributes, and with the
keyword <<Interface>>

 A dotted open-triangle arrow, from a
class to an interface, means that “the
class implements this interface”.
 We also say that “the class fulfils the

contract specified by this interface”, or
that it “realizes the interface.”

 Note that interfaces
define methods but
not attributes.
 A password allows a

secureLogin().

Interfaces in Java 7
 An Interface is like a Class, with no bodies in the methods.

It may define constants (public static final) but no
runtime variables.
 Usually, an Interface is public.

 An interface provides a standard way to access a class which could be
implemented in many different ways.

 The Java Tutorials:
 “There are a number of situations in software engineering when it is

important for disparate groups of programmers to agree to a ‘contract’
that spells out how their software interacts.”

 “Each group should be able to write their code without any knowledge of
how the other group's code is written.”

 “Generally speaking, interfaces are such contracts.”

COMPSCI 230: Impl1 5

Interfaces in Java 8

COMPSCI 230: Impl1 6

 In Java 8, an interface may contain
 default implementations of instance methods, and
 implementations of static methods.

 In any OO language, an interface
 cannot be instantiated, and
 defines a “contract” which any realization of the interface must fulfil.

 Java is a strongly-typed language.
 Java compilers can enforce contracts, by refusing to compile classes

whose implementations might “partially realize” an interface.

 Java is a tightly-specified language.
 If a compiler allows instantiations of incompletely-implemented interfaces,

then it is not a Java compiler.

Implementations as contracts
 A class which realizes an interface must provide an

implementation of every method defined within the interface
 A class may implement some additional methods (but these extra

methods aren’t accessible through this interface)
 Beware: adding another method to an existing Interface will “break” every

current implementation of this Interface!

 A class can implement many interfaces.
 An Interface can extend other Interfaces.
 Extension is the preferred way to add new methods to an Interface.

 (Do you understand why?)

 In Java, classes are less extendible than interfaces, because a Class can
extend at most one other Class (“single inheritance”).
class MountainBike extends Bicycle { … }

COMPSCI 230: Impl1 7

Interfaces in Java 8

COMPSCI 230: Impl1 8

 In Java 8, an interface may contain
 default implementations of instance methods, and
 implementations of static methods.

 In any OO language, an interface
 cannot be instantiated, and
 defines a “contract” which any realization of the interface must fulfil.
 In Java, a realization is denoted by the keyword implements.

Example 1

COMPSCI 230: Impl1 9

public interface Bicycle {
 void changeCadence(int newValue);
 void changeGear(int newValue);
 void speedUp(int increment);
 void applyBrakes(int decrement);
}

class ACMEBicycle implements Bicycle {
 int cadence = 0;
 void changeCadence(int newValue) {
 cadence = newValue;
 }
 \\ note: an implementation may be incorrect!
 void changeGear(int newValue) {}
 void speedUp(int increment) {}
 void applyBrakes(int decrement) {}
}

\\ an implementation may have variables

Example 2

COMPSCI 230: Impl1 10

public interface GroupedInterface extends
 Interface1, Interface2, Interface3 {

 // constant declarations
 // base of natural logarithms
 double E = 2.718282;

 // method signatures
 void doSomething(int i, double x);
 int doSomethingElse(String s);

}

Example 3

COMPSCI 230: Impl1 11

public interface EventListener {
 // No constants
 // No method signatures!
}
 “A tagging interface that all event listener interfaces must extend.”

[http://docs.oracle.com/javase/6/docs/api/java/util/EventListener.html]
 Why?
 At first glance, this is worse than useless! One more name for the Java

programmer to remember…
 This interface allows programmers, and the Java compiler, to distinguish

event-listeners from all other types of classes and interfaces.
 Event-listeners are important, and they behave quite differently to a

regular class. (Later, you’ll learn about inversion of control…)

http://docs.oracle.com/javase/6/docs/api/java/util/EventListener.html

MouseListener in java.awt.event
public interface MouseListener extends EventListener

The listener interface for receiving “interesting” mouse events (press, release, click,
enter, and exit) on a component. (To track mouse moves and mouse drags, use
the MouseMotionListener.)

All Known Subinterfaces:
MouseInputListener

All Known Implementing Classes:
AWTEventMulticaster, BasicButtonListener, BasicComboPopup.InvocationMouseHandler,
BasicComboPopup.ListMouseHandler, BasicDesktopIconUI.MouseInputHandler, …

COMPSCI 230: Impl1 12

public interface MouseListener
 extends EventListener {
 mouseClicked(MouseEvent e);
 mouseEntered(MouseEvent e);
 mouseExited(MouseEvent e);
 mousePressed(MouseEvent e);
 mouseReleased(MouseEvent e);
}

public interface MouseMotionListener extends EventListener {
 mouseDragged(MouseEvent e);
 mouseMoved(MouseEvent e);
}

public interface MouseInputListener
 extends MouseListener, MouseMotionListener {
 // this interface has 7 method signatures, can you list them?
}

http://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html
http://docs.oracle.com/javase/7/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/event/MouseInputListener.html
http://docs.oracle.com/javase/7/docs/api/java/awt/AWTEventMulticaster.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicButtonListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.InvocationMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.ListMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicDesktopIconUI.MouseInputHandler.html

Using an Interface as a Type

COMPSCI 230: Impl1 13

 “When you define a new interface, you are defining a new reference data
type.
 “You can use interface names anywhere you can use any other data type name.
 “If you define a reference variable whose type is an interface, any object you

assign to it must be an instance of a class that implements the interface.”
[http://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html]

 Example on the next slide:
 A method for finding the largest object in a pair of objects, for any objects that

are instantiated from a class that implements Relatable.

public interface Relatable {
 public int isLargerThan(Relatable other);
}

http://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html

Using an Interface as a Type

COMPSCI 230: Impl1 14

public Object findMax(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if((obj1).isLargerThan(obj2) > 0)
 return object1;
 else
 return object2;
}

 If comparisons are important in your application, then you’ll be able
to write very elegant code!
 You can write z.findMax(x, y), if x and y are instances of any class which

extends Relatable.

Using an Interface as a Type: Mismatches

COMPSCI 230: Impl1 15

public Object findMax(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if((obj1).isLargerThan(obj2) > 0)
 return object1;
 else return object2;
}

 We’d get errors at compile-time (or at runtime) if
 (object1).isLargerThan(object2) were in the body of this method, if
 we invoked it as z.findMax(x,y), for any instance x of a class that doesn’t

extend Relatable, or if
 we invoked it as x.findLargest(y,z), if y.isLargerThan() does not

accept z as a parameter.

 Typing is complex… we’ll keep looking at it, in different ways…

Typing Rules
 The typing rules for interfaces are similar to those for classes.
 A reference variable of interface type T can refer to an instance of any

class that implements interface T or a sub-interface of T.
 Through a reference variable of interface type T, methods defined by T

and its super interfaces can be called.

COMPSCI 230: Impl1 16

interface I1 {
 public void m1();
 public void m2();
}

class c1 implements I1 {
 public void m1() {}
 public void m2() {}
} interface I2 extends I1 {

 public void m3();
}

class c2 implements I2 {
 public void m1() {}
 public void m2() {}
 public void m3() {}
}

C1 a = new C1(); \\ a is a reference variable of type C1
C1 b = new C1();
I1 p = a; \\ p is a reference variable of type I1
p.m1();

C2 c = new C2();
I2 q = c; \\ q is a reference variable of type I2
q.m1();
q.m2();

«realize»

«realize»

instanceof

COMPSCI 230: Impl1 17

 You can use the instanceof operator to test an object to see
if it implements an interface, before you invoke a method in this
interface.
 This might improve readability and correctness.
 This might be a hack.

 Where possible, you should extend classes and interfaces to obtain polymorphic
behaviour, rather than making a runtime check.

if(b instanceof Bounceable) {
 b.hitWall("Wall A");
} else { \\ abort, with an error message to the console
 throw new AssertionError(b);
}

Date somedate = new Date();
\\ throw an exception if somedate is not Relatable.
assert(Date instanceof Relatable);
\\ See http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

Abstract Classes

COMPSCI 230: Impl1 18

 Sometimes, it’s appropriate to partly-implement a class or interface.
 Abstract classes allow code to be reused in similar implementations.

 Abstract classes may include some abstract methods.
 If there are no abstract methods, then the class is usually (but not always)

implemented fully enough to be used by an application.
 Sometimes it’s helpful to have multiple implementations that differ only in their type, but this is

quite an advanced concept in design.

public abstract class MyGraphicObject {
 // declare fields – these may be non-static
 private int x, y;
 // declare non-abstract methods
 // (none)
 // declare methods which must be implemented later
 abstract void draw();
}

Example

COMPSCI 230: Impl1 19

public class Rectangle extends Shape {
 private int width, height;
 public int area() {
 return (width * height);
 }
 ...

abstract class Shape {
 Point p;
 Shape(){ this(0, 0); }
 Shape(x, y){ p = new Point(x, y); }
 public abstract void draw(Graphics g);
 public abstract int area();
}

public class Triangle extends Shape {
 private int base, height;
 public int area() {
 return (base * height) / 2;
 }
 ...

An abstract method is defined with a
signature but no implementation.

Abstract methods

Concrete subclasses must
implement all abstract methods.

public class Circle extends Shape {
 private int radius;
 public int area() {
 return (int) (Math.PI * radius * radius);
 }
 ...

Super!

COMPSCI 230: Impl1 20

 If your method overrides one of its superclass's methods, you can invoke the overridden method
through the use of the keyword super.
 You can also use super to refer to a hidden field (although hiding fields is discouraged).

 Example below.
 Can you determine what will be printed to System.out when main() is executed?

public class Superclass {
 public void printMethod() {
 System.out.println("Printed in Superclass.");
} }
public class Subclass extends Superclass {
 public void printMethod() { // overrides super.printMethod
 super.printMethod();
 System.out.println("Printed in Subclass");
} }
public static void main(String[] args) {
 Subclass s = new Subclass();
 s.printMethod();
} }

Printed in Superclass.
Printed in Subclass

Hiding vs overriding

COMPSCI 230: Impl1 21

 If a subclass defines a static method with the same signature as a
static method in the superclass, then
 the method in the subclass hides the one in the superclass.

 The distinction between hiding a static method and overriding an
instance method has important implications:
 The version of the overridden instance method that gets invoked is the

one in the subclass.
 The version of the hidden static method that gets invoked depends on

whether it is invoked from the superclass or the subclass.
 Hmmm… this could be confusing! So … I don’t encourage you to hide methods.

 Overriding methods is an important part of OO design.

this

COMPSCI 230: Impl1 22

 Within an instance method or a constructor, this is a reference
to the current object —
 the object whose method or constructor is being called.

 You can refer to any member of the current object
 from within an instance method or a constructor
 by using this.

 The most common reason for using the this keyword is
 because a field is shadowed by a method or constructor parameter.

Is shadowing a good idea?

COMPSCI 230: Impl1 23

 A parameter can have the same name as one of the class's fields.
 If this is the case, the parameter is said to shadow the field.

 Shadowing fields can make your code difficult to read and is
conventionally used
 only within constructors and methods that set a particular field.

 For example, consider the following Circle class …

 Source: http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Example: using this.x

COMPSCI 230: Impl1 24

public class Point {
 public int x = 0;
 public int y = 0;
 public Point(int a, int b) {
 x = a;
 y = b;
 }
}

 Equivalently:
public class Point {
 public int x = 0;
 public int y = 0;
 public Point(int x, int y) {
 this.x = x; // this.x refers to the shadowed instance variable
 this.y = y;
 }
}

Using this()

COMPSCI 230: Impl1 25

 From within a constructor, you can also use the this keyword to
 call another constructor in the same class.

 Doing so is called an explicit constructor invocation.
[https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html]

(Let’s look at an example of this in Eclipse.)

(I also want to show you how to import a JARfile.)

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

Final

COMPSCI 230: Impl1 26

 The final keyword can be applied to prevent the extension
(over-riding) of a field, argument, method, or class.
 Final field: constant
 Final argument: cannot change the data within the called method
 Final method: cannot override method in subclasses
 Final class: cannot be subclassed (all of its methods are implicitly final

as well)
class ChessAlgorithm {
. . .
 final void nextMove(
 ChessPiece pieceMoved, BoardLocation newLocation) {
 \\ body of nextMove – can’t be overriden
 }
}

Review

COMPSCI 230: Impl1 27

 Interfaces in Java
 Types in Java
 Abstract classes in Java
 Six important keywords:
 interface
 implements
 abstract
 super
 this
 final

	Slide Number 1
	Agenda
	Learning objectives: Java Implementation
	Interfaces, in UML
	Interfaces in Java 7
	Interfaces in Java 8
	Implementations as contracts
	Interfaces in Java 8
	Example 1
	Example 2
	Example 3
	MouseListener in java.awt.event
	Using an Interface as a Type
	Using an Interface as a Type
	Using an Interface as a Type: Mismatches
	Typing Rules
	instanceof
	Abstract Classes
	Example
	Super!
	Hiding vs overriding
	this
	Is shadowing a good idea?
	Example: using this.x
	Using this()
	Final
	Review

