CompSci 230
Software Construction

Java Implementation: Part 1 S1 2015

£R/ASA

T — Age n d a‘

» Topics:
Interfaces in Java
Reference data types
Abstract classes in Java

Java syntax: five important keywords

» Reading

In The Java Tutorials:

What is an Interface?, in the Object-Oriented Programming Concepts Lesson

The Interfaces and Inheritance Lesson

2 COMPSCI 230: Impl1

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/concepts/interface.html
http://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

SIS

Z_Learning objectives: Java Implementation

» Students will be competent at implementing OO designs in Java
Interfaces, reference data types, abstract classes, intro to generics

Visibility, packages, static & dynamic typing, conversion & casting

» The lectures will give you the basic “theory”, but they won’t give
you a “‘working understanding” — you have to do the hard-yards of
putting these ideas into practice.

You won’t even understand the theory, if you listen passively to lectures.
I'll try to help you “learn how to learn” from the Java tutorials.

You’ll get many chances to develop your understanding in your lab
assighments for this course.

3 COMPSCI 230: Impll

SIS

¥ Interfaces, in UML

» Interfaces specify behaviour (a public
contract), without data or
implementation.

» Interfaces are drawn like classes, but

without attributes, and with the
keyword <<Interface>>

» A dotted open-triangle arrow, from a
class to an interface, means that “the
class implements this interface”.

We also say that “the class fulfils the

contract specified by this interface”, or
that it “realizes the interface.”

<z<interface=>=
+ Person

+getName()
~getEmailAddress()
~secureLogin()

3 3

+ Lecturer + Student

» Note that interfaces
define methods but
not attributes.

A password allows a
secureLogin().

COMPSCI 230: Impl1

£R/ASA

¥ Interfaces in Java 7

» An Interface is like a Class, with no bodies in the methods.
It may define constants (public static final) but no

runtime variables.
Usually,an Interface is public.
An interface provides a standard way to access a class which could be
implemented in many different ways.

» The Java lutorials:

“There are a number of situations in software engineering when it is
important for disparate groups of programmers to agree to a ‘contract’
that spells out how their software interacts.”

“Each group should be able to write their code without any knowledge of
how the other group's code is written.”

“Generally speaking, interfaces are such contracts.”
5 COMPSCI 230: Impll

£R/ASA

¥ [nterfaces in Java 8

» In Java 8, an interface may contain
defaul t implementations of instance methods, and
implementations of static methods.

» In any OO language, an interface
cannot be instantiated, and

defines a “contract” which any realization of the interface must fulfil.

» Java is a strongly-typed language.
Java compilers can enforce contracts, by refusing to compile classes
whose implementations might “partially realize” an interface.

» Java is a tightly-specified language.
If a compiler allows instantiations of incompletely-implemented interfaces,
then it is not a Java compiler.

6 COMPSCI 230: Impll

£R/ASA

¥ _Implementations as contracts

» A class which realizes an interface must provide an
implementation of every method defined within the interface

A class may implement some additional methods (but these extra
methods aren’t accessible through this interface)

Beware: adding another method to an existing Interface will “break” every
current implementation of this Interface!

» A class can implement many interfaces.
» An Interface can extend other Interfaces.

Extension is the preferred way to add new methods to an Interface.
(Do you understand why?)

In Java, classes are less extendible than interfaces, because a Class can
extend at most one other Class (“single inheritance”).

class MountainBike extends Bicycle { .. }
COMPSCI 230: Impll

£R/ASA

¥ [nterfaces in Java 8

» In Java 8, an interface may contain
defaul t implementations of instance methods, and
implementations of static methods.

» In any OO language, an interface
cannot be instantiated, and

defines a “contract” which any realization of the interface must fulfil.
In Java, a realization is denoted by the keyword Implements.

8 COMPSCI 230: Impll

SIS

¥ _ Example 1

public interface Bicycle { cinterfacer
void changeCadence(int newValue); Bicycle
void changeGear(int newValue); -

void speedUp(int increment); ' roalizen
void applyBrakes(int decrement);

ACMEBicycle

}

class ACMEBicycle implements Bicycle {
int cadence = 0; \\ an implementation may have variables
void changeCadence(int newValue) {
cadence = newValue;

}

\\ note: an implementation may be i1ncorrect!
void changeGear(int newValue) {}

void speedUp(int increment) {}

void applyBrakes(int decrement) {}

9 } COMPSCI 230: Impll

SRR
@ Example 2

public Interface Groupedlnterface extends
Interfacel, Interface2, Interface3 {

«interface» «interface» «interface»

Interface1 Interface2 Interface3

// constant declarations
// base of natural logarithms T 7
double E = 2.718282; «interface»

Groupedinterface

// method signhatures
void doSomething(Int 1, double x);
Int doSomethingElse(String s);

10 COMPSCI 230: Impll

. Example 3

public Interface EventListener { cnerces
// No constants
// No method signatures!

}

» “A tagging interface that all event listener interfaces must extend.”
[]
» Why!

At first glance, this is worse than useless! One more name for the Java
programmer to remember...

» This interface allows programmers, and the Java compiler; to distinguish
event-listeners from all other types of classes and interfaces.

Event-listeners are important, and they behave quite differently to a
regular class. (Later, you’ll learn about inversion of control...)

11 COMPSCI 230: Impll

http://docs.oracle.com/javase/6/docs/api/java/util/EventListener.html

SIS

Z_MouseListener in java.awt.event

public interface extends

The listener interface for receiving “interesting’” mouse events (press, release, click,

enter, and exit) on a component. (To track mouse moves and mouse drags, use

the MouseMotionListener.) p“g)'(::gnégtg‘;ﬁifi!igﬁgt'?m”er

A|| Known Subinterfaces- mouseClicked(MouseEvent e);
' mouseEntered(MouseEvent e);

mouseExited(MouseEvent e);
mousePressed(MouseEvent e);

All Known Implementing Classes: , mouseReleased(MouseEvent e);

’ y y

9 9 oo

public interface MouseMotionListener extends EventListener {
mouseDragged(MouseEvent e);
mouseMoved(MouseEvent e);

}

public interface MouselnputListener
extends MouseListener, MouseMotionListener {

// this interface has 7 method signatures, can you list them?
12 } COMPSCI 230: Impl1

http://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html
http://docs.oracle.com/javase/7/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/event/MouseInputListener.html
http://docs.oracle.com/javase/7/docs/api/java/awt/AWTEventMulticaster.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicButtonListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.InvocationMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.ListMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicDesktopIconUI.MouseInputHandler.html

£R/ASA

Z_Using an Interface as a Type

» “When you define a new interface, you are defining a new reference data
type.
“You can use interface names anywhere you can use any other data type name.

“If you define a reference variable whose type is an interface, any object you
assign to it must be an instance of a class that implements the interface.”

[]
» Example on the next slide:

A method for finding the largest object in a pair of objects, for any objects that
are instantiated from a class that implements Relatable.

public Interface Relatable {
public Int i1sLargerThan(Relatable other);

}

13 COMPSCI 230: Impll

http://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html

SIS

¥ _Using an Interface as a Type

public Object findMax(Object objectl, Object object2) {
Relatable objl = (Relatable)objectl;
Relatable obj2 = (Relatable)object?;
1T((objl).i1sLargerThan(obj2) > 0)
return objectl;
else
return object?;

}

» If comparisons are important in your application, then you’ll be able
to write very elegant code!

You can write z.findMax(x, YY), if X and Yy are instances of any class which
extends Relatable.

14 COMPSCI 230: Impll

SIS

¥ _Using an Interface as a Type: Mismatches

public Object findMax(Object objectl, Object object2) {
Relatable objl = (Relatable)object]l;
Relatable obj2 = (Relatable)object?;
1T(C (objl).i1sLargerThan(obj2) > 0)
return objectl;
else return object2;

}

» We'd get errors at compile-time (or at runtime) if
(objectl).i1sLargerThan(object2) were in the body of this method, if

we invoked it as z. FindMax (X, Yy), for any instance X of a class that doesn’t
extend Relatable,or if

we invoked it as X. findLargest(y,z), ify.1sLargerThan() does not
accept Z as a parameter.

» Typing is complex... we'll keep looking at it, in different ways...

15 COMPSCI 230: Impll

SIS

ZF_Typing Rules

» The typing rules for interfaces are similar to those for classes.

A reference variable of interface type T can refer to an instance of any
class that implements interface T or a sub-interface of T.

Through a reference variable of interface type T, methods defined by T

and its super interfaces can be called. : interface 11 {
«realize» __p| public void m1();

_______________ public void m2();

class c1 implements 11 { ¥
public void m1() {} T
public void m2() {}
3 interface 12 extends 11 {
public void m3();
C1l a=new C1(); \\ ais areference variable of type C1 }
Cl b =new C1(); A
11 p=a;\\pisa reference variable of type 11 : «realize»
p.m1(); 1
class c2 implements 12 {
C2 ¢ = new C2(); _ public void m1() {3}
12 g = c; \\ qis areference variable of type 12 public void m2() {3}
q.m1Q); public void m3() {3}
q.m2(); }

16 COMPSCI 230: Impll

S

@ instanceof

» You can use the InstanceoT operator to test an object to see
if it implements an interface, before you invoke a method in this
interface.

This might improve readability and correctness.
This might be a hack.

Where possible, you should extend classes and interfaces to obtain polymorphic
behaviour, rather than making a runtime check.

1T(b instanceof Bounceable) {

b.hitwall("wall A™);
} else { \\ abort, with an error message to the console

throw new AssertionError(b);

}

Date somedate = new Date();
\\ throw an exception 1T somedate i1s not Relatable.

assert(Date instanceof Relatable);
\\ See

17 COMPSCI 230: Impll

http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

SIS

,,,,,,,,,,,,,,,,, _Abstract Classes

» Sometimes, it’s appropriate to partly-implement a class or interface.
Abstract classes allow code to be reused in similar implementations.

» Abstract classes may include some abstract methods.

If there are no abstract methods, then the class is usually (but not always)
implemented fully enough to be used by an application.

Sometimes it’s helpful to have multiple implementations that differ only in their type, but this is
quite an advanced concept in design.

public abstract class MyGraphicObject {
// declare fTields — these may be non-static
private Int X, y;
// declare non-abstract methods
// (none)
// declare methods which must be 1mplemented later
abstract void draw();

18 COMPSCI 230: Impll

abstract class Shape {
Point p;
— Shape(){ this(0, 0); }

anmple Shape(x, y){ p = new Point(x,); }

public abstract void draw(Graphics Q);

Shape public abstract int area();

p : Point }
«create» Shape() : Shape An abstract method is defined with a
«create» Shape(x : int,y : int) : Shape signature but no implementation.
raw(g : Graphics) : voi
area() : int

Abstract methods

Circle Triangle
radius : int Rectangle base : int
. P height : int
«create» Circle() : Circle width - int
< raw(g : Graphics) : VO height - int «create» Triangle() : Triangle
rea() : int aw(g : Graphics) : vO
«crea le() : Rectangle < rea() - int Concrete subclasses must
< draw(g : Graphics) : voi implement all abstract methods.
sint L —)")
public class Rectangle extends Shape { public class Circle extends Shape {
private int width, height; private int radius;
public int area() { public int area() {
return (width * height); return (int) (Math.PI1 * radius * radius);

} +

public class Triangle extends Shape {
private int base, height;
public int area() {
return (base * height) 7/ 2;

he
19 COMPSCI 230: Impll

£R/ASA

= _Super!

» If your method overrides one of its superclass's methods, you can invoke the overridden method
through the use of the keyword super.
You can also use super to refer to a hidden field (although hiding fields is discouraged).
» Example below.
Can you determine what will be printed to System.out when main() is executed?
public class Superclass {
public void printMethod() {
System.out.printIn(’'Printed in Superclass.');
3}
public class Subclass extends Superclass {
public void printMethod() { // overrides super.printMethod
super.printMethod();
System.out.printIn("'Printed in Subclass');
+ 3}
public static void main(String[] args) {
Subclass s = new Subclass();
s.printMethod();

} 1

20 COMPSCI 230: Impll

SIS

¥ _Hiding vs overriding

» If a subclass defines a static method with the same signature as a
static method in the superclass, then
the method in the subclass hides the one in the superclass.

» The distinction between hiding a static method and overriding an
instance method has important implications:

The version of the overridden instance method that gets invoked is the
one in the subclass.

The version of the hidden static method that gets invoked depends on
whether it is invoked from the superclass or the subclass.

Hmmm... this could be confusing! So ... | don’t encourage you to hide methods.

» Overriding methods is an important part of OO design.

21 COMPSCI 230: Impll

SIS

@ this

» Within an instance method or a constructor, this is a reference
to the current object —

the object whose method or constructor is being called.

» You can refer to any member of the current object
from within an instance method or a constructor
by using this.
» The most common reason for using the this keyword is

because a field is shadowed by a method or constructor parameter.

22 COMPSCI 230: Impll

SRR
g [s shadowing a good idea?

» A parameter can have the same name as one of the class's fields.

If this is the case, the parameter is said to shadow the field.

» Shadowing fields can make your code difficult to read and is
conventionally used

only within constructors and methods that set a particular field.

» For example, consider the following Circle class ...

Source:

23 COMPSCI 230: Impll

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

public Int X
public Int vy
public Point(
a,
b;

public class Point
i

X
y

}
}

» Equivalently:

public class Point
public Int x =
public Int y =
public Point(i
this.x = x

this.y = vy

24

{

0;

0;
nt

n

~ O O

A,

Xs
//

Example: using this.Xx

int b) {

int y) {

this.x

refers to the shadowed

instance variable

COMPSCI 230: Impl1

SRR
@ Using this()

» From within a constructor, you can also use the this keyword to

call another constructor in the same class.

» Doing so is called an explicit constructor invocation.

[]

(Let’s look at an example of this in Eclipse.)

(I also want to show you how to import a JARfile.)

25 COMPSCI 230: Impll

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

SIS

,,,,,,,,,,,,,,,,, _Final

» The final keyword can be applied to prevent the extension
(over-riding) of a field, argument, method, or class.
Final field: constant
Final argument: cannot change the data within the called method
Final method: cannot override method in subclasses

Final class: cannot be subclassed (all of its methods are implicitly final
as well)
class ChessAlgorithm {

final void nextMove(
ChessPiece pieceMoved, BoardLocation newLocation) {
\\ body of nextMove — can’t be overriden

26 COMPSCI 230: Impll

SIS

¥ Review

» Interfaces in Java
» Types in Java

» Abstract classes in Java

» Six important keywords:

Interface
implements
abstract
super

this

final

27

COMPSCI 230: Impl1

	Slide Number 1
	Agenda
	Learning objectives: Java Implementation
	Interfaces, in UML
	Interfaces in Java 7
	Interfaces in Java 8
	Implementations as contracts
	Interfaces in Java 8
	Example 1
	Example 2
	Example 3
	MouseListener in java.awt.event
	Using an Interface as a Type
	Using an Interface as a Type
	Using an Interface as a Type: Mismatches
	Typing Rules
	instanceof
	Abstract Classes
	Example
	Super!
	Hiding vs overriding
	this
	Is shadowing a good idea?
	Example: using this.x
	Using this()
	Final
	Review

