
Java Implementation: Part 1 S1 2015

CompSci 230
Software Construction

Agenda

COMPSCI 230: Impl1 2

 Topics:
 Interfaces in Java
 Reference data types
 Abstract classes in Java
 Java syntax: five important keywords

 Reading
 In The Java Tutorials:

 What is an Interface?, in the Object-Oriented Programming Concepts Lesson
 The Interfaces and Inheritance Lesson

http://docs.oracle.com/javase/tutorial/
http://docs.oracle.com/javase/tutorial/java/concepts/interface.html
http://docs.oracle.com/javase/tutorial/java/concepts/index.html
http://docs.oracle.com/javase/tutorial/java/IandI/index.html

Learning objectives: Java Implementation

COMPSCI 230: Impl1 3

 Students will be competent at implementing OO designs in Java
 Interfaces, reference data types, abstract classes, intro to generics
 Visibility, packages, static & dynamic typing, conversion & casting

 The lectures will give you the basic “theory”, but they won’t give

you a “working understanding” – you have to do the hard-yards of
putting these ideas into practice.
 You won’t even understand the theory, if you listen passively to lectures.

I’ll try to help you “learn how to learn” from the Java tutorials.
 You’ll get many chances to develop your understanding in your lab

assignments for this course.

Interfaces, in UML

COMPSCI 230: Impl1 4

 Interfaces specify behaviour (a public
contract), without data or
implementation.

 Interfaces are drawn like classes, but
without attributes, and with the
keyword <<Interface>>

 A dotted open-triangle arrow, from a
class to an interface, means that “the
class implements this interface”.
 We also say that “the class fulfils the

contract specified by this interface”, or
that it “realizes the interface.”

 Note that interfaces
define methods but
not attributes.
 A password allows a

secureLogin().

Interfaces in Java 7
 An Interface is like a Class, with no bodies in the methods.

It may define constants (public static final) but no
runtime variables.
 Usually, an Interface is public.

 An interface provides a standard way to access a class which could be
implemented in many different ways.

 The Java Tutorials:
 “There are a number of situations in software engineering when it is

important for disparate groups of programmers to agree to a ‘contract’
that spells out how their software interacts.”

 “Each group should be able to write their code without any knowledge of
how the other group's code is written.”

 “Generally speaking, interfaces are such contracts.”

COMPSCI 230: Impl1 5

Interfaces in Java 8

COMPSCI 230: Impl1 6

 In Java 8, an interface may contain
 default implementations of instance methods, and
 implementations of static methods.

 In any OO language, an interface
 cannot be instantiated, and
 defines a “contract” which any realization of the interface must fulfil.

 Java is a strongly-typed language.
 Java compilers can enforce contracts, by refusing to compile classes

whose implementations might “partially realize” an interface.

 Java is a tightly-specified language.
 If a compiler allows instantiations of incompletely-implemented interfaces,

then it is not a Java compiler.

Implementations as contracts
 A class which realizes an interface must provide an

implementation of every method defined within the interface
 A class may implement some additional methods (but these extra

methods aren’t accessible through this interface)
 Beware: adding another method to an existing Interface will “break” every

current implementation of this Interface!

 A class can implement many interfaces.
 An Interface can extend other Interfaces.
 Extension is the preferred way to add new methods to an Interface.

 (Do you understand why?)

 In Java, classes are less extendible than interfaces, because a Class can
extend at most one other Class (“single inheritance”).
class MountainBike extends Bicycle { … }

COMPSCI 230: Impl1 7

Interfaces in Java 8

COMPSCI 230: Impl1 8

 In Java 8, an interface may contain
 default implementations of instance methods, and
 implementations of static methods.

 In any OO language, an interface
 cannot be instantiated, and
 defines a “contract” which any realization of the interface must fulfil.
 In Java, a realization is denoted by the keyword implements.

Example 1

COMPSCI 230: Impl1 9

public interface Bicycle {
 void changeCadence(int newValue);
 void changeGear(int newValue);
 void speedUp(int increment);
 void applyBrakes(int decrement);
}

class ACMEBicycle implements Bicycle {
 int cadence = 0;
 void changeCadence(int newValue) {
 cadence = newValue;
 }
 \\ note: an implementation may be incorrect!
 void changeGear(int newValue) {}
 void speedUp(int increment) {}
 void applyBrakes(int decrement) {}
}

\\ an implementation may have variables

Example 2

COMPSCI 230: Impl1 10

public interface GroupedInterface extends
 Interface1, Interface2, Interface3 {

 // constant declarations
 // base of natural logarithms
 double E = 2.718282;

 // method signatures
 void doSomething(int i, double x);
 int doSomethingElse(String s);

}

Example 3

COMPSCI 230: Impl1 11

public interface EventListener {
 // No constants
 // No method signatures!
}
 “A tagging interface that all event listener interfaces must extend.”

[http://docs.oracle.com/javase/6/docs/api/java/util/EventListener.html]
 Why?
 At first glance, this is worse than useless! One more name for the Java

programmer to remember…
 This interface allows programmers, and the Java compiler, to distinguish

event-listeners from all other types of classes and interfaces.
 Event-listeners are important, and they behave quite differently to a

regular class. (Later, you’ll learn about inversion of control…)

http://docs.oracle.com/javase/6/docs/api/java/util/EventListener.html

MouseListener in java.awt.event
public interface MouseListener extends EventListener

The listener interface for receiving “interesting” mouse events (press, release, click,
enter, and exit) on a component. (To track mouse moves and mouse drags, use
the MouseMotionListener.)

All Known Subinterfaces:
MouseInputListener

All Known Implementing Classes:
AWTEventMulticaster, BasicButtonListener, BasicComboPopup.InvocationMouseHandler,
BasicComboPopup.ListMouseHandler, BasicDesktopIconUI.MouseInputHandler, …

COMPSCI 230: Impl1 12

public interface MouseListener
 extends EventListener {
 mouseClicked(MouseEvent e);
 mouseEntered(MouseEvent e);
 mouseExited(MouseEvent e);
 mousePressed(MouseEvent e);
 mouseReleased(MouseEvent e);
}

public interface MouseMotionListener extends EventListener {
 mouseDragged(MouseEvent e);
 mouseMoved(MouseEvent e);
}

public interface MouseInputListener
 extends MouseListener, MouseMotionListener {
 // this interface has 7 method signatures, can you list them?
}

http://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html
http://docs.oracle.com/javase/7/docs/api/java/util/EventListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/event/MouseInputListener.html
http://docs.oracle.com/javase/7/docs/api/java/awt/AWTEventMulticaster.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicButtonListener.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.InvocationMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicComboPopup.ListMouseHandler.html
http://docs.oracle.com/javase/7/docs/api/javax/swing/plaf/basic/BasicDesktopIconUI.MouseInputHandler.html

Using an Interface as a Type

COMPSCI 230: Impl1 13

 “When you define a new interface, you are defining a new reference data
type.
 “You can use interface names anywhere you can use any other data type name.
 “If you define a reference variable whose type is an interface, any object you

assign to it must be an instance of a class that implements the interface.”
[http://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html]

 Example on the next slide:
 A method for finding the largest object in a pair of objects, for any objects that

are instantiated from a class that implements Relatable.

public interface Relatable {
 public int isLargerThan(Relatable other);
}

http://docs.oracle.com/javase/tutorial/java/IandI/interfaceAsType.html

Using an Interface as a Type

COMPSCI 230: Impl1 14

public Object findMax(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if((obj1).isLargerThan(obj2) > 0)
 return object1;
 else
 return object2;
}

 If comparisons are important in your application, then you’ll be able
to write very elegant code!
 You can write z.findMax(x, y), if x and y are instances of any class which

extends Relatable.

Using an Interface as a Type: Mismatches

COMPSCI 230: Impl1 15

public Object findMax(Object object1, Object object2) {
 Relatable obj1 = (Relatable)object1;
 Relatable obj2 = (Relatable)object2;
 if((obj1).isLargerThan(obj2) > 0)
 return object1;
 else return object2;
}

 We’d get errors at compile-time (or at runtime) if
 (object1).isLargerThan(object2) were in the body of this method, if
 we invoked it as z.findMax(x,y), for any instance x of a class that doesn’t

extend Relatable, or if
 we invoked it as x.findLargest(y,z), if y.isLargerThan() does not

accept z as a parameter.

 Typing is complex… we’ll keep looking at it, in different ways…

Typing Rules
 The typing rules for interfaces are similar to those for classes.
 A reference variable of interface type T can refer to an instance of any

class that implements interface T or a sub-interface of T.
 Through a reference variable of interface type T, methods defined by T

and its super interfaces can be called.

COMPSCI 230: Impl1 16

interface I1 {
 public void m1();
 public void m2();
}

class c1 implements I1 {
 public void m1() {}
 public void m2() {}
} interface I2 extends I1 {

 public void m3();
}

class c2 implements I2 {
 public void m1() {}
 public void m2() {}
 public void m3() {}
}

C1 a = new C1(); \\ a is a reference variable of type C1
C1 b = new C1();
I1 p = a; \\ p is a reference variable of type I1
p.m1();

C2 c = new C2();
I2 q = c; \\ q is a reference variable of type I2
q.m1();
q.m2();

«realize»

«realize»

instanceof

COMPSCI 230: Impl1 17

 You can use the instanceof operator to test an object to see
if it implements an interface, before you invoke a method in this
interface.
 This might improve readability and correctness.
 This might be a hack.

 Where possible, you should extend classes and interfaces to obtain polymorphic
behaviour, rather than making a runtime check.

if(b instanceof Bounceable) {
 b.hitWall("Wall A");
} else { \\ abort, with an error message to the console
 throw new AssertionError(b);
}

Date somedate = new Date();
\\ throw an exception if somedate is not Relatable.
assert(Date instanceof Relatable);
\\ See http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html
http://docs.oracle.com/javase/1.4.2/docs/guide/lang/assert.html

Abstract Classes

COMPSCI 230: Impl1 18

 Sometimes, it’s appropriate to partly-implement a class or interface.
 Abstract classes allow code to be reused in similar implementations.

 Abstract classes may include some abstract methods.
 If there are no abstract methods, then the class is usually (but not always)

implemented fully enough to be used by an application.
 Sometimes it’s helpful to have multiple implementations that differ only in their type, but this is

quite an advanced concept in design.

public abstract class MyGraphicObject {
 // declare fields – these may be non-static
 private int x, y;
 // declare non-abstract methods
 // (none)
 // declare methods which must be implemented later
 abstract void draw();
}

Example

COMPSCI 230: Impl1 19

public class Rectangle extends Shape {
 private int width, height;
 public int area() {
 return (width * height);
 }
 ...

abstract class Shape {
 Point p;
 Shape(){ this(0, 0); }
 Shape(x, y){ p = new Point(x, y); }
 public abstract void draw(Graphics g);
 public abstract int area();
}

public class Triangle extends Shape {
 private int base, height;
 public int area() {
 return (base * height) / 2;
 }
 ...

An abstract method is defined with a
signature but no implementation.

Abstract methods

Concrete subclasses must
implement all abstract methods.

public class Circle extends Shape {
 private int radius;
 public int area() {
 return (int) (Math.PI * radius * radius);
 }
 ...

Super!

COMPSCI 230: Impl1 20

 If your method overrides one of its superclass's methods, you can invoke the overridden method
through the use of the keyword super.
 You can also use super to refer to a hidden field (although hiding fields is discouraged).

 Example below.
 Can you determine what will be printed to System.out when main() is executed?

public class Superclass {
 public void printMethod() {
 System.out.println("Printed in Superclass.");
} }
public class Subclass extends Superclass {
 public void printMethod() { // overrides super.printMethod
 super.printMethod();
 System.out.println("Printed in Subclass");
} }
public static void main(String[] args) {
 Subclass s = new Subclass();
 s.printMethod();
} }

Printed in Superclass.
Printed in Subclass

Hiding vs overriding

COMPSCI 230: Impl1 21

 If a subclass defines a static method with the same signature as a
static method in the superclass, then
 the method in the subclass hides the one in the superclass.

 The distinction between hiding a static method and overriding an
instance method has important implications:
 The version of the overridden instance method that gets invoked is the

one in the subclass.
 The version of the hidden static method that gets invoked depends on

whether it is invoked from the superclass or the subclass.
 Hmmm… this could be confusing! So … I don’t encourage you to hide methods.

 Overriding methods is an important part of OO design.

this

COMPSCI 230: Impl1 22

 Within an instance method or a constructor, this is a reference
to the current object —
 the object whose method or constructor is being called.

 You can refer to any member of the current object
 from within an instance method or a constructor
 by using this.

 The most common reason for using the this keyword is
 because a field is shadowed by a method or constructor parameter.

Is shadowing a good idea?

COMPSCI 230: Impl1 23

 A parameter can have the same name as one of the class's fields.
 If this is the case, the parameter is said to shadow the field.

 Shadowing fields can make your code difficult to read and is
conventionally used
 only within constructors and methods that set a particular field.

 For example, consider the following Circle class …

 Source: http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

http://docs.oracle.com/javase/tutorial/java/javaOO/arguments.html

Example: using this.x

COMPSCI 230: Impl1 24

public class Point {
 public int x = 0;
 public int y = 0;
 public Point(int a, int b) {
 x = a;
 y = b;
 }
}

 Equivalently:
public class Point {
 public int x = 0;
 public int y = 0;
 public Point(int x, int y) {
 this.x = x; // this.x refers to the shadowed instance variable
 this.y = y;
 }
}

Using this()

COMPSCI 230: Impl1 25

 From within a constructor, you can also use the this keyword to
 call another constructor in the same class.

 Doing so is called an explicit constructor invocation.
[https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html]

(Let’s look at an example of this in Eclipse.)

(I also want to show you how to import a JARfile.)

https://docs.oracle.com/javase/tutorial/java/javaOO/thiskey.html

Final

COMPSCI 230: Impl1 26

 The final keyword can be applied to prevent the extension
(over-riding) of a field, argument, method, or class.
 Final field: constant
 Final argument: cannot change the data within the called method
 Final method: cannot override method in subclasses
 Final class: cannot be subclassed (all of its methods are implicitly final

as well)
class ChessAlgorithm {
. . .
 final void nextMove(
 ChessPiece pieceMoved, BoardLocation newLocation) {
 \\ body of nextMove – can’t be overriden
 }
}

Review

COMPSCI 230: Impl1 27

 Interfaces in Java
 Types in Java
 Abstract classes in Java
 Six important keywords:
 interface
 implements
 abstract
 super
 this
 final

	Slide Number 1
	Agenda
	Learning objectives: Java Implementation
	Interfaces, in UML
	Interfaces in Java 7
	Interfaces in Java 8
	Implementations as contracts
	Interfaces in Java 8
	Example 1
	Example 2
	Example 3
	MouseListener in java.awt.event
	Using an Interface as a Type
	Using an Interface as a Type
	Using an Interface as a Type: Mismatches
	Typing Rules
	instanceof
	Abstract Classes
	Example
	Super!
	Hiding vs overriding
	this
	Is shadowing a good idea?
	Example: using this.x
	Using this()
	Final
	Review

