
Lecture 5: Object-Oriented Design, Part 2

CompSci 230

Software Construction

Agenda & Reading

COMPSCI 230: OOD2 2

 Topics:

 Abstraction and information hiding

 Inheritance, instantiation, and polymorphism

 Association, aggregation, and composition

 Reading

 The Java Tutorials, on Inheritance

 Wikipedia, on Class Diagram

http://docs.oracle.com/javase/tutorial/java/concepts/inheritance.html
http://en.wikipedia.org/wiki/Class_diagram

Learning Objectives

COMPSCI 230: OOD2 3

 Students will have a strong conceptual foundation for their future

uses of the OO features of Java

 Abstraction and information hiding (refined into two definitions)

 Inheritance (is-a) vs composition/aggregation/association (has-a)

 Polymorphism

 Students will be able to discuss the OO features of an existing

design (as expressed in a Java program or a class diagram)

 Students will be competent at basic OO design

 Teaching strategy in this unit: first an overview, then “dig deeper”

the second time around…

Abstraction

COMPSCI 230: OOD2 4

 An abstraction is a view or representation of an entity that

includes only the attributes of significance in a particular context.

 Abstraction is essential when working with complex systems.

 Without abstraction, the programmer faces an overwhelming level

of detail.

Complex

Object

Idealised

Model

Ignore

Inessential Details

Instance variables:
Names : String
DateOfBirth : Date

Methods:
getSurname(): String
getFirstname (): String
getAge(): Integer
setSurname(name: String): void

Customer

Instance Variables:
item: Vector

Methods:
push(object:Object): void
pop(): Object

Stack

Instance Variables:
topLeftCorner: Point
Width: Integer
Height: Integer

Methods:
paint(): void Rectangle

Information Hiding: two definitions

COMPSCI 230: OOD2 5

1. A programming technique. The programmer is trying to hide info by
 using language features (such as Interface, protected, private) to restrict

access to implementation details.

 In the extreme case, other programmers are not allowed to “look inside” your
library classes to see their implementations.

2. A design technique. The designer is trying to hide info by
 defining a model which is as simple as possible (but useful, and unlikely to change).

 In the extreme case, other programmers can read your high-level design documents,
but they can not read (and need not read) any existing implementation.

 It is usually undesirable for programmers to rely on “undocumented functions”
in an implementation, and type-1 info-hiding makes it harder for these to be
discovered.
 Undocumented functions are subject to change with every release

 Extreme type-2 info-hiding is usually undesirable
 Design documents are rarely complete, accurate, and unambiguous.

 Important requirements are often expressed only in the test-suite or in informal
understandings among the devteam, the QA team, and primary stakeholders.

Inheritance and Instantiation

COMPSCI 230: OOD2 6

 Inheritance: create new classes from existing classes.

 Instantiation: create new instances from existing classes.

 Inheritance is more powerful than instantiation.

 When a subclass is created by inheritance from a superclass, some of

the methods and attributes in its superclass may be added or redefined.

 Inheritance is an “is-a” relation.

 Example: “An orange is a fruit. An apple is a fruit.”

 Every instance of an Orange is a Fruit (= its superclass) , but it is more accurately

described as being an instance of the Orange class (= its subclass).

 If there is no important difference between oranges and apples, you should

simplify your design!

Polymorphism

COMPSCI 230: OOD2 7

 Different objects can respond differently to the same message.

 Inheritance is the “obvious” way to obtain polymorphic behaviour in your
OO design, but it may not be the best way.

 Instantiations are polymorphic, if the values in their attributes affect the
behaviour of their methods.

 Hmmm… if you have instantiated a million objects of a single Class,
could they do anything useful? Hmmm….

 Worker ants are (nearly) identical, but they won’t reproduce without a Queen ant.

 Ants may be important members of an ecosystem, but only if the ecosystem
contains other forms of life, some inanimate objects, and an energy source.

 One way to conceive of OOD is that you’re designing an ecosystem with multiple
species (Classes) in an evolutionary tree.

 It is possible to write a useful program in a non-OO language!

 Polymorphism is not necessary in programming, but it is fundamental to OO
design.

OO Analysis: Basic Questions

COMPSCI 230: OOD2 8

 What classes and instances should be in my high-level design?

 To get started on answering this question, you should identify important

entities, and look for commonalities among different entities.

 Similar entities might be instances of the same class… but maybe there are some

“natural” subclasses?

 How should my classes and instances be related to each other?

 We have seen the Inheritance (“is-a”) relationship.

 We have also seen the Instantiation (“instance-of”) relationship.

 We will now look at a few other relationships that are fundamental to

OO design.

4. Composition and Aggregation

 Composition (“owns-a”, “has-a”):

 An object is a component of at most

one composition.

 When a composition instance is

destroyed, all objects belonging to this

instance are destroyed as well.

 Example: SimCard has-a SIM

 Aggregation (“has-a”):

 An object can be in many aggregations.

 Example: Pond has-a Duck

 COMPSCI 230: OOD2 9

 These relationships create a complex class from one or more

existing classes (or instances), in a whole/part relationship.

Association

COMPSCI 230: OOD2 10

 In an association, an instance of one class is linked to an instance of

another class.

 An aggregation is an association, because the aggregating class has

instance variables which refer to objects of its parts.

 A composition is an association, because the “container” or “owner” has

references to its parts,

 An association may have no “container”, “owner”, or “whole”.

 Example: every teacher has 0 or more students, and every student has 0

or 1 teachers.

Multiplicities

COMPSCI 230: OOD2 11

 The multiplicity of an association may be important enough to

include in a high-level design document.

 The filled-diamond notation for compositions implies that the “whole”

(Composite) class has a multiplicity of 1..1 or 0..1 – because each Part can

belong to at most one whole.

 No department can exist unless it is part of a university, so the

University’s multiplicity in this association is 1..1 (sometimes written “1”).

 A university must have at least one department.

 Multiplicities of 0..* are not very informative.

Inheritance

COMPSCI 230: OOD2 12

 Generalisation

 Look for conceptual commonalities in the abstractions

 Common attributes/state

 Common methods or behaviour

 “is-a” relationship

 Subclass “is-a” kind of Superclass

 Superclass (base class) defines the general state and behaviour

 Subclass (derived) class :

 Created from an existing class, by extending the existing class, rather than
rewriting it

 Examples

 Person

 Employee & Customer (Customer “is-a” Person)

Example: Person.java & Employee.java

Composition Vs Inheritance

COMPSCI 230: OOD2 13

Means of transportation

Wheeled vehicle Packhorse

Bicycle Automobile

Component

Button Label TextComponent

TextField TextArea

Car

Engine

Cylinders Crankshaft

Body Wheels

Human
body

Bone Muscles
Nervous
system

Skin

Composition Vs Inheritance

COMPSCI 230: OOD2 14

 Suppose we want to create a class to represent circles:
 Composition or Inheritance?

 Circle is a point with a radius?

 Circle has a point with a radius?

 General guideline
 Inheritance : Is-a

 Composition : has-a

 But there is no rulebook - the objective is clean, understandable and
maintainable code that can be implemented in reasonable time

 Some more guidelines:
 Inheritance provides a means for constructing highly reusable components, but

needs to be used very carefully

 Choose composition first when creating new classes from existing classes. You
should only used inheritance if it is required by your design. If you use
inheritance where composition will work, your designs will become needlessly
complicated

Composition

COMPSCI 230: OOD2 15

import java.awt.Point;

public class Circle {

 private Point p;

 private int radius;

 public Circle (int x, int y, int radius) {

 p = new Point (x, y);

 this.radius = radius;

 }

 public double getX() {

 return p.getX ();

 }

 public double getY() {

 return p.getY ();

 }

 public int getRadius () {

 return radius;

 }

 // additional code

}

Circle c1 = new Circle();

System.out.println("x=" + c1.getX() + ", y=" + c1.getY());

System.out.println("radius=" + c1.getRadius());

Example: Circle_a/Circle.java

Inheritance

 We could reuse Point class

since it already has code for

representing a point position

COMPSCI 230: OOD2 16

Circle c1 = new Circle();

System.out.println("x=" + c1.getX() + ", y=" + c1.getY());

System.out.println("radius=" + c1.getRadius());

import java.awt.Point;

public class Circle extends Point {

 private int radius;

 public Circle() {

 }

 public int getRadius () {

 return radius;

 }

 // additional code

}

Inherited from Point class

Instance variable: radius

Example: Circle_i/Circle.java

Review

COMPSCI 230: OOD2 17

 Abstraction

 The ability of a language (and a designer) to take a concept and create an
abstract representation of that concept within a program

 Information Hiding

 How well does this language, designer, and programmer hide an object’s
internal implementation?

 Inheritance

 The “is-a” relation: important for code reuse

 Polymorphism

 How does this language let us treat related objects in a similar fashion?

 Composition, Aggregation, Association

 Types of “has-a” relations: ways to build complex classes from simpler
ones.

