
CompSci 230
Software Construction

Lecture Slides #4: Use Cases S1 2015

Agenda & Reading

CompSci 230: UC2

 Topics:
 Review (or learn for the first time)

 What are the major steps in an Object-Oriented Design process?
 Introduction to Use Case modelling

 What? A process of determining what the stakeholders require – by decomposing their
requirements into tasks (or “use cases”) for each class of stakeholders.

 How? Stakeholder Identification, Requirements Elicitation, Use Case Diagrams
 Why learn this? Use cases are widely used in the industry, because they seem to work pretty

well, they aren’t very expensive to develop, and they are at a good level of detail for end-users.
 Major alternatives (not taught in this course): user stories (for agile development), formal

specifications (for safety-critical software).

 Reading:
 D. G. Firesmith, “Use Cases: the Pros and Cons”, in The Wisdom of the Gurus, SIGS

Reference Library,1996. Available: http://www.ksc.com/article7.htm.
 To learn more (optional reading):

 A. Ramirez, “Requirements Capture”, in ArgoUML User Manual, v0.34, 2011.
 Object Management Group, “Use Cases”, in OMG Unified Modeling Language (OMG

UML) Superstructure, v 2.4.1, 6 August 2011.

Software Design (review)

CompSci 230: UC3

 Communication:
 identify stakeholders, find out what they want and need.

 Planning:
 list tasks, identify risks, obtain resources, define milestones, estimate schedule.

 Modeling:
 develop structure diagrams and use cases, maybe some other UML artifacts.

 Construction:
 implement the software, with assured quality.

 Deployment:
 deliver the software, then get feedback for possible revision.

To learn more:
R. Pressman, Software Engineering: A Practitioner’s Approach, 7th Ed., 2010, pp. 14-15.

Stakeholder Identification

CompSci 230: UC4

 Identify a variety of stakeholders, by asking yourself:
 Who is likely to be affected by, or to have an effect on, this system?

 Classify the stakeholders you know about.
 Anyone who will directly use the system is a stakeholder.
 Anyone who will be indirectly affected (in a major way) is a stakeholder.

 Anyone who pays for, or otherwise controls. the design of the system is a
stakeholder.

 Advertisers are important stakeholders for Google’s online search service.
 Governments are stakeholders, if their laws constrain the design of a

system (e.g. because citizens could be greatly harmed by the system).
 Note: use cases depict the requirements of direct stakeholders (users),

but you’ll have to use another method (e.g. natural language) to describe
the requirements of indirect and external stakeholders.

 Reflect on your classification – have you missed an important class?

Use Case Analysis

CompSci 230: UC5

 To start developing use cases, ask yourself:
 What useful tasks could be performed by my system, upon request by a user?
 You probably won’t “get it right” at first. (It’ll never be perfect, but could be

improved…)
 To validate your current set of use cases, talk to stakeholders!
 Ask them “Would you use a system, if it would help you do …?”
 If they start telling you how they want the system to handle a use-case, then you

have validated this use-case.
 You should record their detailed requirements, in natural language, as notes which

accompany your use case.
 If their detailed requirements are infeasible or contradictory, you should take careful

note of this!
 If they tell you about some other task they’d like the system to help them with,

you should document this as a possible use-case.
 Your system can’t do everything!
 Whenever you discover that you can’t deliver on all use cases within your current

resources, you should communicate with your stakeholders to negotiate a feasible set.

An Example: Video System

CompSci 230: UC6

 John’s Video Store is an Information System which supports the
following business functions:
 Recording information about videos the store owns

 This database is searchable by staff and all customers

 Information about which customer is renting which videos
 Access by staff, and also by customers who is asking about themselves.

 Staff are able to record video rentals and returns by customers.
 John doesn’t trust his customers to make these entries in their own records!

 Staff can maintain customer, video and staff information.
 Privacy requirements: customers cannot access information about other

customers, personal information about customers must be accurate and relevant
to John’s Video Store, …

 Managers of the store can generate various reports.

Who are the stakeholders?

CompSci 230: UC7

 John’s Video Store is an Information System which supports the
following business functions:
 Recording information about videos the store owns

 This database is searchable by staff and all customers

 Information about which customer is renting which videos
 Access by staff, and also by customers who is asking about themselves.

 Staff are able to record video rentals and returns by customers.
 John doesn’t trust his customers to make these entries in their own records!

 Staff can maintain customer, video and staff information.
 Privacy requirements: customers cannot access information about other

customers, personal information about customers must be accurate and relevant
to John’s Video Store, …

 Managers of the store can generate various reports.

What are the tasks?

CompSci 230: UC8

 John’s Video Store is an Information System which supports the
following business functions:
 Recording information about videos the store owns

 This database is searchable by staff and all customers

 Information about which customer is renting which videos
 Access by staff, and also by customers who is asking about themselves.

 Staff are able to record video rentals and returns by customers.
 John doesn’t trust his customers to make these entries in their own records!

 Staff can maintain customer, video and staff information.
 Privacy requirements: customers cannot access information about other

customers, personal information about customers must be accurate and relevant
to John’s Video Store, …

 Managers of the store can generate various reports.

Requirements Documentation

CompSci 230: UC9

 Use case descriptions
 A brief statement of what happens during each use case.
 The previous slide is a good start on this, but it’s not well-organised.

 Use case diagrams show
 Stick-figure actors, interacting with the system (a box).

 Choose easily-understood names for your classes of stakeholders!
 John’s Video Store might have three actors: Customer, Staff, and Manager.
 (Hmmm… is John an actor? Does he have a special use-case which is so

important that we must add it to our diagram? Hold this question…)

 Ovals (“use cases”) within the box, with easily-understood names, e.g.
“Rent a video”.

 Lines (“associations”) between actors and ovals.
 Optionally: arrowheads, extension cases, included cases, subsystems.

Maintain Customers

Example: John’s Video Store

CompSci 230: UC10

Staff

John’s Video Store

Rent/Return Videos

Maintain Videos

Generate Reports

Customer

Manager

Search for Videos

John

 “Include is a DirectedRelationship between two use cases, implying that the
behavior of the included use case is inserted into the behavior of the including
use case. …

 “An include relationship between use cases is shown by a dashed arrow with
an open arrowhead from the base use case to the included use case. The
arrow is labeled with the keyword «include».” [OMG UML v2.4.1, §16.3.5]

«include»

«include»

John’s Video Store, with HR module

CompSci 230: UC11

Staff

John’s Video Store

Rent/Return Videos

Maintain Customers

Maintain Videos

Generate Reports

Customer

Manager

Search for Videos

John
Maintain Manager List

Maintain Staff List

«include»

«include»

Example: Query Health Use Case

CompSci 230: UC12 Finalized: 2011-11-16
http://wiki.siframework.org/Query+Health+-+Consensus+Approved+Use+Case

Video System – Designing the Classes

CompSci 230: UC13

 In this system, information stored includes:
 Videos - unique ID; title; category (children's, drama, comedy, etc); cost per night

to rent; number of copies video store has available; rating
 Staff - unique ID; name; password; position
 Customers - unique ID; name; password; address; phone #
 Rentals - date rented, customer who rent the video and whether video returned

 Functions this system provides include:
 Staff can add, update, delete and find videos
 Staff can add, update, delete and find people.
 Staff can rent out videos to customer and indicate videos have been returned.
 Various reporting functions e.g. number of videos rented this month are

provided for managers.

Use Case Descriptions

CompSci 230: UC14

 Use case descriptions should be detailed enough that system
analysts can
 design the classes (by grouping attributes and decomposing functions),

and
 determine the non-functional requirements:

 “what the system should be” (or always be doing), as distinguished from “what the
system should do, upon request”;

 “what the system shouldn’t do” (security requirements);
 usability, auditability, performance, efficiency, capacity, scalability, extensibility,

availability, reliability, integrity, recovery, compatibility, portability, maintainability,
transparency, legal conformance, …

Semi-formal Use Cases

CompSci 230: UC15

 In some development environments (e.g. in the IBM Rational Unified Process), use cases are semi-
formal documents with a required structure e.g.
 Title: the “goal the use case is trying to satisfy” [Fowler, 2004]
 Main Success Scenario: a numbered list of steps
 Step: “a simple statement of the interaction between the actor and a system” [Fowler, 2004]
 Extensions: separately numbered lists, one per extension
 To learn more, see the Wikipedia article on “Use Case”. (But don’t worry about extensions. The focus in

CompSci 230 is on the basics!)
 Example: a semi-formal use case for SearchForVideos

 1. Used by Staff via an application to query for videos by title.
 2. Event Flow:

 2.1 Repeat Until Exit Program
 2.1.1 Staff types in part of title in text field,
 2.1.2 Staff clicks “Search” button and a list of matching videos are returned showing ID and title. If no videos found, goto

step 2.2. If error, goto step 2.3.
 2.1.3. Staff types in a ID. More information is displayed about the video e.g. rating, price to rent, etc
 2.1.4 Exit Program

 2.2 No videos found - error message displayed. Goto 2.1.1
 2.3 Database Error – error message displayed. Goto 2.1.1

 3. Related Actors and Use Cases: Staff may perform this search for a Customer. No inclusions.
Included in Rent/Return Videos and Maintain Videos.

 4. Special conditions: NONE

Staff

Search for Videos

Customer

JVS system
John’s Video Store

How to draw UML class diagrams?

CompSci 230: UC16

 Sketch by hand
 Use a general-purpose graphics editor
 Use ArgoUML, or some other specialised graphics editor
 Ideally, your UML tool is integrated with your IDE.
 Forward engineering: document your requirements with use cases,

develop your design with class diagrams, then start coding.
 Reverse engineering: inspect the code to discover its class structure and

use cases.
 ArgoUML does a good job of reverse-engineering class diagrams.
 ArgoUML is clueless about reverse-engineering use cases. (Do you understand

why this form of reverse-engineering is very difficult?)

Alternatives to use cases

CompSci 230: UC17

 Story, in agile development:
 a one-sentence description of a feature which could

be implemented quickly (i.e. tomorrow, or by the
end of this week).

 Formal specification, in safety-critical
development:
 a precise statement, in a formal language, of

 the post-conditions which will hold after a system action
is completed,

 given some pre-conditions (which are also formally
specified),

 with some accompanying, explicit, and validated
assumptions about the system and its
environment.

“As a member of John’s
staff, I want to search for
my customers by their first
name, last name, or by
their first and last name.”

Review

CompSci 230: UC18

 Use cases are functional descriptions of what the system should do for
its users.
 Use case diagrams depict Actors, the system, and the tasks performed by the

system that are important to the Actors.
 If use case descriptions are sufficiently detailed, then they are very helpful in OO

design.
 Use case diagrams are orthogonal to OO design, except in their identification of

Actors (= classes of users).
 Use cases are commonly used in commercial software development, but

there are some important alternatives.
 Learning goals for this unit:
 If you’re aiming for an A in this class, you should be able to discuss the strengths

& weaknesses of use case analysis as a methodology for requirements capture.
 If you’re aiming for a B or better, you should be able to do a good job of drawing

up a set of use cases from an informal description.
 If you’re aiming for a C or better, you should be able to do a good job of

interpreting the information presented in a use-case diagram or description.
(Practice in Quiz 1.)

