
CompSci 230

Software Construction

 Lecture Slides #3: Introduction to OOD S1 2015

Version 1.1 of 2015-03-12: added return to code on slides 10, 13

Agenda

COMPSCI 230: IOOD 2

 Topics:

 Software Design (vs. hacking)

 Object-Oriented Design (vs. other approaches to SW design)

 Classes & Objects

 Introduction to UML class diagrams

 Object diagrams may be helpful for visualizing instantiations

 Variables & Methods

Software Design

COMPSCI 230: IOOD 3

 Communication:

 identify stakeholders, find out what they want and need.

 Planning:

 list tasks, identify risks, obtain resources, define milestones, estimate schedule.

 Modeling

 develop structure diagrams and use cases, maybe some other UML artifacts.

 Different approaches: OO, procedural, data.

 Construction:

 implement the software, with assured quality.

 Deployment:

 deliver the software, then get feedback for possible revision.

To learn more:

R. Pressman, Software Engineering: A Practitioner’s Approach, 7th Ed., 2010, pp. 14-15.

 What is Object-Oriented Design?

 In OO design, a system is a
 collection of interacting objects.

 Each object should have simple
attributes and behaviours.

 Each object should have simple
relations to other objects.

 In procedural design, a system is a
 collection of basic blocks.

 Each basic block should have a simple
effect on local and global variables.

 Basic blocks are linked by control-
flow arcs: if/then/else, call/return,
while/loop, for/loop, case, goto, …

 In data architecture, a system is a
 collection of data structures, with

access and update methods.

 Each data structure should have
simple relations to other data
structures. COMPSCI 230: IOOD 4

object 3

object 2

object 4

object 1

Program

What is an Object?

COMPSCI 230: IOOD 5

 A building block for OO development

 Like objects in the world around us

 Objects have state and behaviour

 Examples:

 Dog

 State/field/attribute: name, colour, isHungry, …

 Behaviour: bark(), fetch(), eat(), …

 Bicycle

 State: gear, cadence, colour, …

 Behaviour: brake(), turn(), changeGear(), …

 VCR

 State: brand, colour, isOn …

 Behaviour: play(), stop(), rewind(), turnOn(), …

Classes & Objects

6

 Class

 A set of objects with shared behaviour and individual state

 Individual state:

 Data is stored with each instance, as an instance variable.

 Shared behaviour:

 Code is stored with the class object, as a method.

 Shared state may be stored with the class object, as a class variable.

 Object

 Objects are created from classes at runtime by instantiation

 usually with New.

 There may be zero, one, or many objects (instances) of a class.

 Instantiated objects are garbage-collected if no other
user-defined object can reference them.

Imagine a world of communicating objects

COMPSCI 230: IOOD 7

 Object

 An object remembers things (i.e. it has a memory): its state.

 An object responds to messages it gets from other objects.

 It performs the method with the given parameters, then sends a response.

 An object that receives a strange message may throw an exception. Be careful!

 An object’s method may “ask for help” from other objects.

 It sends a message to an object, and waits for a response.

 A method may send a message to itself! This is called recursion. Be careful.

 Messages between objects

 Usually: method calls and method returns, sometimes exceptions.

Information Hiding

COMPSCI 230: IOOD 8

 The implementation details of a method should be of no concern

to the sender of the message.

 If a JavaKid tells a JavaDog to fetch(), the dog might run across

a busy street during its fetch().

 Parameterised methods allow the senders to have more control over
object behaviour. For example, a JavaDog might have a parameterised

fetch() method:

 ball = dog.fetch(SAFELY);

 Note: in these lecture slides, the word “should” indicates an

element of style.

 You should write Java code that is understandable to other Java

programmers.

Example 1: Ball

 Attributes

 Represent the internal state of an

instance of this class.

 Constructor

 Creates the object

 Methods

 Implement the processing

performed by or to an object, often

updating its state.

 If there are read and write methods
for an attribute x, these should be

called getX() and setX().

 You should learn Java’s conventions
for capitalisation and naming.

COMPSCI 230: IOOD 9

public class Ball

{

 public final static int SIZE = 20;

 private int xPos;

 private int yPos;

 private Color color;

 public Ball(int x, int y, Color c) {

 xPos = x;

 yPos = y;

 color = c;

 }

 public void move(int deltaX, int deltaY) {

 xPos += deltaX;

 yPos += deltaY;

 }

 public void paint(Graphics g) {

 g.setColor(color);

 g.fillOval(xPos,yPos,SIZE,SIZE);

 }

}

Example: Ball.java

Object Instantiation

COMPSCI 230: IOOD 10

 When a constructor method is called, a new instance is created.

 If a class definition doesn’t include a constructor method, the Java

compiler inserts a default constructor with default initialisations.

Ball b = new Ball(10, 20, Color.Red);

Ball c = new Ball(0, 10, Color.Blue);

public class Class1 {

 private int x;

 // Note no explicit constructor

 public int increment() {

 return ++x;

 }

}

b: Ball

xPos = 10

yPos = 20

Color = Red
c: Ball

xPos = 0

yPos = 10

Color = Blue

d: Class1

x = 0

Class1 d = new Class1();

Blecch!

// is this good code?

Message Passing

COMPSCI 230: IOOD 11

 In a method call, a message is passed to a receiver object.

 The receiver’s response to the message is determined by its class.

b.move(50, 100);

Ball b = new Ball(10, 20, Color.Red);

b: Ball

xPos =10

yPos = 20

Color = Red

b: Ball

xPos = 10 60

yPos = 20120

Color = Red receiver
message

arguments

public class Ball {

...

 public void move(int deltaX, int deltaY) {

 xPos += deltaX;

 yPos += deltaY;

 }

}

Instance & Class Variables

COMPSCI 230: IOOD 12

 Class variables are statically allocated, so they

 are shared by an entire Class of objects.

 The runtime system allocates class variables once per class,
regardless of the number of instances created of that class.

 Static storage is allocated when the class is loaded.

 All instances share the same copy of the class variables.

 Instance variables are dynamically allocated, so they

 may have different values in each instance of an object.

 When an object is instantiated, the runtime system
allocates some memory to this instance – so that it can
“remember” the values it stores in instance variables.

 Test your understanding:

 List the names of all class variables in Ball.

 List the names of all instance variables in Ball.

b2: Ball

xPos =10

yPos = 10

Color = Blue

: Class

name = “Ball”

size = 10

b1: Ball

xPos=10

yPos = 20

Color = Red

Instance & Class Methods

COMPSCI 230: IOOD 13

 Instance methods operate on this

object's instance variables.

 They also have read & write access to class

variables.

 E.g. _______________

 Class methods are static.

 Class methods cannot access instance

variables.

 Class methods are handled by the “class

object” – they can be called even if there are

no instances of this class.

 (Example on the next slide.)

public class Class1 {

 private int x;

 public int increment() {

 return ++x; // or x++ ?

 }

}

Class1App

COMPSCI 230: IOOD 14

public class Class1App {

 public static void main(String[] args) {

 Class1 x = new Class1();

 System.out.println(

 "Without initialisation, ++x = "

 + x.increment()

);

 System.out.println(

 "After another incrementation, ++x = "

 + x.increment()

);

 }

}

BallApp

15

import java.awt.*;

import java.awt.event.*;

public class BallApp extends Frame{

 Ball b = new Ball(20, 30, Color.blue);

 public BallApp() {

 addWindowListener(

 new WindowAdapter() {

 public void windowClosing(

 WindowEvent e

) {

 System.exit(0);

 }

 }

);

 setSize(300, 200);

 setVisible(true);

 }

 public void paint(Graphics g) {

 b.paint(g);

 }

 public static void main(

 String[] args

) {

 new BallApp();

 }

}

COMPSCI 230: IOOD

: Class

name = “SharedCounter”

count = 0

: Class

name = “SharedCounter”

count = 0 1

: Class

name = “SharedCounter”

count = 0 1 2

: Class

name = “SharedCounter”

count = 0 1 2 3

COMPSCI 230: IOOD 16

public class SharedCounter {

 private static int count;

 private int value;

 public SharedCounter(int value) {

 this.value = value;

 count++;

 }

 public int getValue() {

 return value;

 }

 public static int getCount() {

 return count;

 }

 public String toString() {

 return "value=" + value + " count=" + count;

 }

}

public static void main(String[] args) {

 SharedCounter c1 = new SharedCounter(10);

 SharedCounter c2 = new SharedCounter(100);

 SharedCounter c3 = new SharedCounter(200);

 System.out.println(c1 + " " + c2 + " " + c3);

}

c1: SharedCounter

value = 10

c3: SharedCounter

value = 200

c2: SharedCounter

value = 100

UML

COMPSCI 230: IOOD 17

 Unified Modeling Language (UML)

 When creating complex OO systems, where do we start?

 When building complex systems, it might be worthwhile to plan things out

before you start coding!

 When building a house, we usually have a set of plans.

 UML is a language which allows us to graphically model an OO

system in a standardised format.

 This helps us (and others!) understand the system.

 There are many different UML diagrams, allowing us to model

designs from many different viewpoints. Roughly, there are

 Structure diagrams (documenting the architecture), e.g. class diagrams

 Behaviour diagrams (documenting the functionality), e.g. use-case diagrams

Object Diagrams in UML

COMPSCI 230: IOOD 18

 In this lecture, I have drawn some object diagrams of instance

models (using coloured boxes).

 An object diagram is a graphic representation of an instance model, showing the

state of a system after some objects have been instantiated, and after some variables

of these objects have been updated.

 Object diagrams are very helpful in tuition, but are not commonly used outside the

classroom.

 Please focus on the basics.

 Understand the distinction between static variables and instance variables.

 Develop a working understanding of instantiation – this is a crucial concept!

 Learn how to draw UML-standard class diagrams.

 Honours-level students might want to learn more about object diagrams. I

recommend “Modelling instances of classifiers using UML object diagrams”, online

Help resource for the IBM Rational Software Modeler, available 4 March 2014.

http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r0m0/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/twrkobjd.html

Tool Support: Eclipse & ArgoUML?

COMPSCI 230: IOOD 19

 You will need a Java development environment. I strongly recommend Eclipse.
 The de-facto industry standard for Java developers. It’s FOSS: free and open-source software. Its

codebase is robust and is under active development. Your tutors will help you learn Eclipse.

 Alternatively, you may use javac and a text editor (e.g. emacs) with Java support

 I reckon every Java developer should know how to run javac from a console, but I won’t attempt to
teach this!

 You will draw some class diagrams and use-case diagrams. Options:
 ArgoUML

 Supports forward- and reverse-engineering.
 Class diagrams Java skeletons. Java classes class diagrams.

 FOSS, works ok but missing some features such as an “undo” button – save your versions carefully!

 No longer under active development: v0.34 is dated 15 December 2011.

 Not on lab image – you’ll have to download and unzip the binary distribution in your echome directory
(or on your USB pendrive) then double-click on argouml.jar (this is an “executable jarfile”). See
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html.

 Any general-purpose drawing package (e.g. Visio)

 Warning: you’ll have trouble with the fancy arrowheads in UML! Maybe Softwarestencils.com/uml/visio?

 By hand:

 This is your only option during exams and tests

 You’ll have to scan your drawings into your assignments (which are submitted online)

http://www.eclipse.org/
http://argouml.tigris.org/
http://argouml-downloads.tigris.org/nonav/argouml-0.34/ArgoUML-0.34.zip
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://argouml-stats.tigris.org/documentation/quickguide-0.32/ch02s02.html
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms
http://www.softwarestencils.com/uml/#Terms

Review

COMPSCI 230: IOOD 20

 The OO approach is based on modeling the real world using interacting

objects.

 OO design is a process of determining what the stakeholders require, designing

a set of classes with objects which will meet these requirements, implementing,

and delivering.

 The statements in a class define what its objects remember and what

they can do (the messages they can understand), that is, they define

 Instance variables, class variables, instance methods, and class methods

 The hardest concept in this set of lecture slides: instantiation.

 Very important!

 A UML class diagram shows the “bare bones” of an OO system design.

 It need not show all classes! (A diagram should not have irrelevant information.)

