
1

Assignment 4

Marking Guide
CompSci 230 S2 2015

Clark Thomborson

Total marks on this assignment: 20. This assignment counts 2% of total marks in COMPSCI 230.

Part 1: Reporting a Responsiveness Defect

1) (8 marks) Assessed work:

Compare the performance of A4v0 with Mandelscape, with respect to GUI responsiveness. You should test

A4v0 in two modes. A4v0.0 is A4v0 being run with 0 worker. A4v0.1 is A4v0 with 1 worker.

If you notice a GUI-responsiveness defect, you should attempt to “reproduce” this defect, that is, you should

attempt to find a reliable way to cause the application to exhibit this defect. For example, the spinner labelled

“Max iter.” may be unresponsive in either or both of these applications, and this unresponsiveness may be

evident only in A4v0.1 but not in A4v0.0 (or vice versa). Note that a description of “what can go wrong” in a

defective application doesn’t reveal the conditions under which the defect can be reliably observed it – and

developing a reasonably-concise but easily-understandable description of “how to observe” a responsiveness

defect should be your primary focus when you are answering this question.

You may run across one or more correctness defects in this code. In particular, a SwingWorker may throw an

uncaught exception which has the effect of killing off that worker but not the application, and the uncompleted

task may result in visible defects in the display. Another known defect (which is also present in Tim’s codebase)

is that multiple mouse-clicks in rapid succession may not have the (desired and expected) effect of causing

multiple zooms, but instead may have the effect of resetting the view to the default zoom. Please do your best

to “work around” any correctness defects you observe. I will issue a new version of a4.jar only if it has fatal

defects in correctness, and (after running it on a fast desktop and a slow laptop) I’m reasonably confident it has

no fatal defects.

Rather than getting side-tracked into correctness defects, when answering this question you should focus your

attention on responsiveness defects. Users generally expect the controls (= widgets or affordances) on their

GUIs to always react, immediately, to their mouse-clicks and mouse-drags. In particular, it should always be

possible for a user to “spin” a spinner, or to click a button – so you should concentrate your testing on the

responsiveness of the three spinners and one button on the GUI of a4v0.

Submit: a paragraph discussing one responsiveness defect you discover in either version of the Mandelscape

application. Your paragraph should

 describe a specific defect (2 marks), and

 it should also describe a reliable method for reproducing this defect in each of the three systems under

test (Mandelscape, a4v0.0, a4v0.1; for 2 marks each).

 If the defect is not reproducible in a system under test, you should state this clearly.

2

Marking notes:

 The defect description should be specific about which control of the display is unresponsive (1 mark); and it

should include some description (not necessarily quantitative) of the length of time in which the app is

unresponsive (1 mark).

 The reproduction method should be described in enough detail that you’d be confident of applying it on any

of the three versions (3 marks). For example, if the method involves multiple mouse clicks, then there should be

some description (not necessarily quantitative) of the time between clicks. There should also be some

description of the state of the application when the method is started, and what mouse click(s) are involved (e.g.

attempting to increase the number-of-iterations spinner, after the initial display has been fully painted.

 For each of the three versions, you should be in no uncertainty about whether the student’s defect is reliably

reproducible. No quantitative description is required however there should be some qualitative descriptor such

as “reliable”, “unreliable”, “occasional”, “unreliable” for each of the three versions (1 mark each * 3 versions = 3

marks)

Part 2: Thread Performance

2) (6 marks) Assessed work:

Discover an (approximate value for) the optimal number of workers for a4v0 on your platform, by determining

the lowest value of “Number of workers” that reliably delivers near-optimal “mega-iterations per second” on the

updates. Note that allocating slightly more than the optimal number of workers will not significantly affect the

time required for an update, and allocating many more than the optimal number of workers will increase the

overheads of task-formation and task-cancellation – possibly to the point of adversely affecting responsiveness.

To estimate the optimal number of workers, you should select a display size and “Max iter” value which causes

your platform to spend about 4 seconds (= 4000 milliseconds) when computing an update. You should then

adjust the Number of workers from 1 to 16, then down from 16 to 1, then from 1 up to 16 again, slowly enough

to ensure that each update is completed before the next update is requested. Your console listing will be quite

long – you should cut-and-paste it into a word-processing document, retaining the entire listing as a single

document (for reference). Then you should edit-down the listing until it consists solely of reports on update-

deletions of the following form: “Update number X deleted. There are 0 pending updates. Latency Y. Work rate

= Z mega-iters per second.” Note that if there are any pending updates in the completion reports on your

experimental trace (for X = 1, 2, 3, … 15, 16, 15, 14, 13, …, 2, 1, 2, …, 15 16) then the reported work-rates are

unreliable – because some SwingWorkers are doing useless work, thereby consuming CPU resources that are

unavailable to the usefully-working SwingWorkers. Also note that any report of a 0 work-rate is referring to an

update which had been cancelled. If your first attempt does not provide you with a complete experimental trace

(due to some pending updates), you should collect a second experimental trace, adjusting the number of

workers then waiting until the update is completed (as indicated in its console report) before making another

adjustment to the number of workers. If your second attempt fails, you will have reproduced a serious

correctness error in a4v0. If you have discovered a reproducible correctness defect, you should document it

briefly, then you should construct a (partial) experimental trace which contains deletion records of updates

which contain performance records of updates which weren’t cancelled, weren’t running concurrently with

pending updates, and which didn’t immediately follow an update that completed while another update was

pending.

3

Produce two scatterplots from the (X, Y, Z) triples in your experimental trace. Your (X, Y) plot will indicate how

update-completion latency varies as a function of the number of workers. Your (X, Z) plot will indicate how the

max-iter performance varies as a number of workers. Consider what these plots tell you about the optimal

number of workers (for this particular view of a Mandelbrot set, on your particular platform). Now shift your

viewpoint on the Mandelbrot set, and choose a somewhat smaller or larger “Max iter” value, selecting the

optimal number of workers, to get a rough indication of whether or not the “mega-iters per second”

performance of your platform (when running with the optimal number of workers) is reasonably constant over

viewpoint settings. (This is called a “sensitivity analysis” – you’re discovering whether your finding is “sensitive”

to parameters you weren’t directly testing. In this case your experimental trace varied only the number of

workers, but there are many other parameters which could conceivably have a significant effect on

performance.)

Submit: your two scatterplots (1 mark each), accompanied by your discussion (4 marks). Your discussion should

briefly describe any experimental difficulties (such as a correctness defect), and it should focus on your

interpretation of your experimental findings regarding the optimal number of workers.

Marking notes:

 The scatterplots should either be captioned, or have axis labels and a title, so that it is immediately apparent

to the marker what experimental measurement (e.g. a latency or a workrate) is being plotted on the

abscissa/vertical axis (1 mark), and what experimental factor (e.g. the number of workers) is being displayed on

the ordinate/horizontal axis (1 mark)

 The discussion should include some analysis of each scatterplot (1 mark * 2 plots = 2 marks), it should come

to some reasonable and understandable conclusion about the optimal number of workers (1 mark), and it should

make some comment about the unevenness or non-linearity of the plots (1 mark) or about some experimental

difficulty such as an uncaught exception (resulting in a stack trace being printed to the console).

Many students will, I suspect, conclude that “the more workers you allocate, the faster this application will run”.

This is an accurate interpretation of the first derivative of the experimental data, in both plots. If a student

notices that there is a “knee” in their performance plots – typically at 4 workers for a 4-core CPU – commend

them for their insight. As discussed during my last lecture, the apparent performance gain of this application

when there are more workers than cores is solely because these additional workers are able to “crowd out” the

daemons in the JVM and the operating system. Heavily loading a CPU by “crowding out” the daemons is

generally not a good idea when tuning an application for performance, as it will tend to decrease responsiveness

(and even the reliability) of the runtime system; however such performance tuning is quite an advanced topic,

and the mark for a “reasonable and understandable conclusion” should be awarded to students who assert that

16 workers is optimal.

Part 3: Injecting a Defect

3) (6 marks) Submit: A paragraph discussing the presence or absence of your part-1 responsiveness defect in a4v1

(3 marks), and a paragraph discussing your performance findings on a4v1 (2 marks) which refers (in some

relevant and clear way) to a table or plot of your performance measurements (1 marks).

Marking notes:

The first paragraph (on responsiveness) should be easily understandable (1 mark), make a definite statement about

the presence or absence of the defect (1 mark), and contain at least one qualitative or quantitative description of the

4

defect or the detection method (1 mark). For example, the defect may be described as being “reliably” exhibited by

the method, or the response-latency might be characterised as being “several seconds”.

The second paragraph (on performance) should understandably refer to (tabular or graphical) data from both

scenarios (r1 and r2) (1 mark), from both versions (a4v1 and a4v1.1) (1 mark), for four levels of the “number of

workers” factor (= 1, 5, 11, 16). The paragraph should explain how they went about drawing a conclusion from this

complex, 3-dimensional, dataset (1 mark). For example, if a student presents the required data, and if they assert

that some conclusion “is obvious” but they do not provide any explanation of their reasoning, you should award two

marks for their data presentation and zero marks for the explanation.

