
Assignment 3
CompSci 230 S1 2015

Diana Kirk

Submission deadline: 4p.m. Friday 22 May 2015

Version 1.1 of 14 May 2015

Total marks on this assignment: 40. This assignment counts 5% of total marks in COMPSCI 230.

Learning goals. By completing this assignment, you’ll get some practical experience with exploring
black box testing techniques. You’ll also get some practical experience with using JUnit, the de-
facto industry standard environment for unit testing Java code.

Asking for help. If you are uncertain about what is required for this assignment, you should first
review the lecture notes (Lecture D03 – Black box testing) and consult the prescribed readings. You
are welcome to seek assistance from others on “learning the concepts” after you have done your
assigned readings for this course.

Working independently. You are not allowed to have assistance from any other person when you
are completing any part of this assignment. This must be your own work, done independently.
You may gain design ideas or examples from the internet or a textbook. You should not assist
another student with any part of this assignment. However you may help one another with setting
up the JUnit environment, if needed, or with using the debugger.

English grammar and spelling. You will not be marked down for grammatical or spelling errors in
your submission. However if your meaning is not readily apparent to the marker, then you will lose
some marks.

Resource requirements. You’ll need
 JUnit
 The compressed file A3v0.9 – this is available for download at

https://www.cs.auckland.ac.nz/courses/compsci230s1c/assignments/A3v0.9.zip. This
contains:

o The Controller codebase (includes a skeleton test class).
o JavaDocs for the Controller class.
o A skeleton Test Design document.

Submission instructions. You must submit electronically, using the Assignment Drop Box
(https://adb.auckland.ac.nz/). Your submission will be two files:

• a single .pdf document that is your submission for Part 1 below (Test Design)
• a compressed file containing the codebase for your submission for Parts 2 and 3.

Note. If you handwrite your answers for Part 1, you must scan it before submission. The
printer/photocopiers in some computer labs can scan documents and email them to your
aucklanduni account. You should learn how to use this functionality well in advance of the
submission deadline, to avoid last-hour frustrations and a penalty for a late submission.

file:///W:/course/compsci230s2c/assignments/A3v0.9.zip
https://adb.auckland.ac.nz/

 ASSIGNMENT OVERVIEW

You are employed by a software company as Test Engineer. The company produces software for
control systems. The software interfaces with physical sensors that indicate changes in e.g.
temperature and pressure and with control units that respond to changes by e.g. opening and closing
valves. The role of Test Engineer involves creating and designing tests for the control software. It is
expected that Test Engineers have some programming knowledge and are able to troubleshoot failed
tests and locate the defects responsible.

The company is working on a major upgrade for an existing control application. As the codebase is
undergoing major redesign, the Quality Manager has decided to put in place an exhaustive set of
test cases for the main controller functions before upgrade activity commences. These functions
include adding a device to the set of devices controlled by an individual controller, removing a
device from the controller's set of controlled devices and activating control activity on a device by
sending a reading from the controlled environment.

Your first task is to design and create a set of JUnit tests to test the methods addDevice() and
removeDevice(). Your tests will be used as an aid to establishing desired functionality and for
ongoing regression testing. As you also have experience as a developer, you will then be required to
fix the defects found when testing. On the basis of your performance, the Quality Manager will
decide whether you will be assigned as head Test Engineer for the project.

Although the use of source control is not marked in this assignment, you will be working with
several versions of code and are advised to manage these in Subversion or GitHub.

Part 1: Designing your tests
(15 marks)

Study the javadocs for the Controller class (see document compsci230Ass3(ControllerJavadocs)). The
API exposes 5 methods :

• addDevice() This is a method you will test.

• removeDevice() This is a method you will test.

• doControl() Tests for this method will be written at a later date.

• isDeviceInList() You may use this to help you test.

• getNumDevices() You may use this to help you test.

Your task is to design a set of tests aimed at exposing defects in the methods addDevice() and
removeDevice(). As the code-under-test is undergoing significant rework, you should test these
methods from the perspective of a user application. This means you must take a black-box
approach. You should apply partitioning and boundary value techniques. You will be awarded 1
mark for each test you define, up to a maximum of 15 in total, as long as the tests focus on different
usage aspects, represent different partitions and involve boundary values. You are encouraged to
design as many tests as you can think about. Extra tests won't earn you marks for Parts 1 and 2, but
will be important to help you uncover bugs in Part 3.

You will deliver a .pdf document containing a table with your test designs - see the example
document compsci230Ass3(TestDesignExample). The table includes a call to addDevice() with a valid
device and valid device parameters, and defines three tests that cover the expected outcomes of the
method call i.e. the add method should return 'true', the controlled list should include the device and
the size of the controlled list should be 1.

Part 2: Implementing your tests
(15 marks)

Import version 1.1 of the CONTROLLER codebase into Eclipse. You will see a 'src:main' package
'Controller', with 7 classes. The class 'Controller' contains the API under test. You will also see a
'src:test' package with the class 'ControllerTest' – this contains some skeleton test code for you to
use. Note that the skeleton code is consistent with the test design example.

You should implement the tests you designed in Part 1 in the 'ControllerTest' class. When you run
your tests, you should find that many have errors – this is good as it means your tests are
successfully identifying bugs in the code. YOU SHOULD NOT CHANGE ANYTHING IN 'main'.
For Part 2, it does not matter whether or not your tests succeed.

You must present your tests in the same order as in your design document from Part 1 and should
name each test in a way that makes it clear to the markers what you are testing. You will be awarded
1 mark for each test you implement, up to a maximum of 15, as long as the test is consistent with a
test you designed in Part 1. You will NOT be awarded marks for tests that do not appear in your
design document.

Note that you may present each test in it's own test method OR you may group tests for the same
method call together. The main presentation objective for this assignment is clarity.

Part 3: Fixing the bugs
(10 marks)

There are at least 5 defects in the CONTROLLER CLASS. You should now use your tests to help you
identify and fix these. Clearly, your success in this will depend upon how good your tests are. You
may at this stage want to include more tests to help you.

You will be awarded 2 marks for each defect you successfully fix. For each, you will get:
• 1 mark for fixing the defect
• .5 mark for including the change in the javadocs at the top of the file (for example, use the

@version tag to say who you are, the date and a short (but meaningful) description of the
change you made)

• .5 marks if your change is of high quality (standards have been met and you have chosen an
elegant solution)

Delivery

You should deliver:

• a single .pdf document that is your submission for Part 1 below (Test Design)
• a compressed file containing the codebase as given to you, and with your JUnit and

source code additions for Parts 2 and 3.

Appendix

Instructions for importing and exporting with Eclipse

1. Unzip the compressed file A3v1.0.zip into the directory you have set up for this
assignment. In the figure below, I have set up a directory in my Home drive. There are 4
documents:

◦ The codebase, which you will import into your development environment and
update in Parts 2 and 3.

◦ Data specification and JavaDocs, which you will require as reference documents.
◦ Test design example document (Open Office), which you may use as basis for the

Design Document you will deliver for Part 1.

2. In Eclipse, select File:Import and then Existing Projects into Workspace.

file:///E:/Import

3. Select the codebase from your working directory.

4. After import, you should see the 'test' and 'src' structure as below.

5. When you are ready to export your updated codebase, select File:Export and
General:Archive File.

file:///E:/Export

6. Browse to yor working directory and save the exported project. You should include some
identification in the file name.

7. Compress the exported project along with your Test Design document and deliver for
marking.

