## COMPSCI 220

Lectures 33-34: Course Review (additional slides only) Algorithm analysis Data sorting Data searching
(Di)graphs Graph algorithms

Lecturer: Georgy Gimel'farb

## Contents of the Review Lectures

- Running time: Examples 1.5, 1.6, 1.2.1 from Textbook.
- Solving recurrences: Examples 1.29-1.32 from Textbook.
- Sorting: inversions; insertion, merge-, quick-, heap sort; heaps.
- Searching: BST, self-balanced search trees.
- Digraphs: representations; sub(di)graphs, classes of traversal arcs.
- DFS / BFS / PFS: examples; determining ancestors of a tree.
- Cycle detection; girth; topological sorting - examples.
- Graph connectivity; strong connected components.
- Maximum matchings; augmented paths - examples.
- Weighed (di)graphs: representations; diameter; radius; excentricity.
- SSSP: Dijkstra's and Bellman-Ford examples.
- APSP: Floyd's examples.
- MST: Prim's and Kruskal's examples.


## Running Time of a Pseudocode Fragment

The running time for this fragment is $\Theta(f(n))$. What is $f(n)$ ? $j \leftarrow 1$
for $i \leftarrow 1$ step $i \leftarrow i+1$ while $i \leq n^{2}$ do
if $i=j$ then
$j \leftarrow j \cdot n$
for $k \leftarrow 1$ step $k \leftarrow k+1$ while $k \leq n$ do
// ...constant number C of elementary operations
end for
else
for $k \leftarrow 1$ step $k \leftarrow k+n$ while $k \leq n^{3}+1$ do
// ...constant number C of elementary operations
end for
end if
end for
A. $n^{4} ;$ B. $n^{3} \log n ; \quad$ C. $n^{3} ;$ D. $n^{2} \log n ;$ E. $n^{2}$

## Running Time of a Pseudocode Fragment

The running time for this fragment is $\Theta(f(n))$. What is $f(n)$ ?

$$
j \leftarrow 1
$$

$$
\text { for } i \leftarrow 1 \text { step } i \leftarrow i+1 \text { while } i \leq n^{2} \text { do } \leftarrow \cdots \cdots \cdots \cdots \cdots \cdots \cdot n^{2} \text { steps }
$$

if $i=j$ then
$j \leftarrow j \cdot n$
for $k \leftarrow 1$ step $k \leftarrow k+1$ while $k \leq n$ do $\varangle \cdots \cdots \cdots n$ steps
// ...constant number C of elementary operations
end for
else
for $k \leftarrow 1$ step $k \leftarrow k+n$ while $k \leq n^{3}+1$ do $\leftarrow \cdots n^{2}$ steps
// ...constant number C of elementary operations
end for
end if
end for
A. $n^{4} ;$ B. $n^{3} \log n ;$ C. $n^{3} ;$ D. $n^{2} \log n ;$ E. $n^{2}$

## Running Time of a Pseudocode Fragment

The running time for this fragment is $\Theta(f(n))$. What is $f(n)$ ?

$$
j \leftarrow 1
$$

$$
\text { for } i \leftarrow 1 \text { step } i \leftarrow i+1 \text { while } i \leq n^{2} \text { do } 4 \cdots \cdots \cdots \cdots \cdots \cdots \cdot n^{2} \text { steps }
$$

$$
\left.\begin{array}{r}
\text { if } i=j \text { then } \\
j \leftarrow j \cdot n
\end{array}\right\} \leftrightarrow \cdots \cdots \cdots i=j \text { only when } j=1 \text {, then } n \text {, then } n^{2}
$$

$$
\text { for } k \leftarrow 1 \text { step } k \leftarrow k+1 \text { while } k \leq n \text { do } \varangle \cdots \ldots \ldots n \text { steps }
$$

// ...constant number $C$ of elementary operations
end for
else
for $k \leftarrow 1$ step $k \leftarrow k+n$ while $k \leq n^{3}+1$ do $\leftarrow \cdot n^{2}$ steps
// ...constant number $C$ of elementary operations end for
end if
end for
A. $n^{4} ; \quad$ B. $n^{3} \log n ; \quad$ C. $n^{3} ; \quad$ D. $n^{2} \log n ; \quad$ E. $n^{2}$

## Running Time of a Pseudocode Fragment

The running time for this fragment is $\Theta(f(n))$. What is $f(n)$ ?

$$
j \leftarrow 1
$$

$$
\text { for } i \leftarrow 1 \text { step } i \leftarrow i+1 \text { while } i \leq n^{2} \text { do } 4 \ldots \ldots \ldots \ldots \ldots \ldots \ldots n^{2} \text { steps }
$$

if $i=j$ then $\left.\begin{array}{r}j \leftarrow j \cdot n\end{array}\right\} \& \cdots \cdots \cdots i=j$ only when $j=1$, then $n$, then $n^{2}$ for $k \leftarrow 1$ step $k \leftarrow k+1$ while $k \leq n$ do $4 \cdots \cdots \cdots n$ steps

> // ...constant number C of elementary operations
end for
else
for $k \leftarrow 1$ step $k \leftarrow k+n$ while $k \leq n^{3}+1$ do $\leftarrow \cdot \cdot n^{2}$ steps // ...constant number $C$ of elementary operations
end if end for
(1) For $i=1, n, n^{2} \rightarrow C n$ (the inner upper for-loop).
(2) $n^{2}-3$ steps of $i \rightarrow C n^{2}$ (the inner bottom for-loop).
(3) $3 C n+\left(n^{2}-3\right) \cdot C n^{2}=C\left(3 n-3 n^{2}+n^{4}\right) \rightarrow f(n)=n^{4}$
A. $n^{4} ; \quad$ B. $n^{3} \log n ; \quad$ C. $n^{3} ; ~ D . ~ n^{2} \log n ;$ E. $n^{2}$

## Running Time of a Pseudocode Fragment

The running time for this fragment is $\Theta(f(n))$. What is $f(n)$ ? $j \leftarrow 1$ for $i \leftarrow 1$ step $i \leftarrow i+1$ while $i \leq n^{2}$ do $4 \cdots \cdots \cdots \cdots \cdots \cdots \cdot n^{2}$ steps
$\left.\begin{array}{rl}\text { if } i=j \text { then } \\ j \leftarrow j \cdot n\end{array}\right\} \& \cdots \cdots \cdots i=j$ only when $j=1$, then $n$, then $n^{2}$ for $k \leftarrow 1$ step $k \leftarrow k+1$ while $k \leq n$ do $4 \ldots \ldots \ldots n$ steps
// ...constant number C of elementary operations
end for
else
for $k \leftarrow 1$ step $k \leftarrow k+n$ while $k \leq n^{3}+1$ do $\varangle \cdot \cdot n^{2}$ steps
// ...constant number C of elementary operations
end if
end for
(1) For $i=1, n, n^{2} \rightarrow C n$ (the inner upper for-loop).
(2) $n^{2}-3$ steps of $i \rightarrow C n^{2}$ (the inner bottom for-loop).
(3) $3 C n+\left(n^{2}-3\right) \cdot C n^{2}=C\left(3 n-3 n^{2}+n^{4}\right) \rightarrow f(n)=n^{4}$
A. $n^{4}$ B. $n^{3} \log n ;$ C. $n^{3} ;$ D. $n^{2} \log n ;$ E. $n^{2}$

## Big-Oh / Omega / Theta Definitions

- Let $f(n)$ and $g(n)$ be non-negative-valued functions, defined on non-negative integers, $n$.
- Let $c$ and $n_{0}$ be a positive real constant and a positive integer, respectively.

If and only if there exist $c$ and $n_{0}$ such that

| $g(n) \leq c f(n)$ for all $n>n_{0}$ then $g(n)$ is $\mathrm{O}(f(n))(g(n)$ is Big Oh of $f(n))$ |
| :--- | :--- |
| $g(n) \geq c f(n)$ for all $n>n_{0}$ then $g(n)$ is $\Omega(f(n))(g(n)$ is Big Omega of $f(n)$ |

- Let $c_{1}, c_{2}$, and $n_{0}$ be two positive real constants and a positive integer, respectively.

If and only if there exist $c_{1}, c_{2}$ and $n_{0}$ such that

$$
c_{1} f(n) \leq g(n) \leq c_{2} f(n) \text { for all } n>n_{0} \text { then } g(n) \text { is } \Theta(f(n))
$$

$(g(n)$ is Big Theta of $f(n))$.

## Big-Oh / Omega / Theta Properties

- Scaling (for $\mathrm{X}=\mathrm{O}, \Omega, \Theta$ ):
$c f(n)$ is $\mathrm{X}(f(n))$ for all constant factors $c>0$.
- Transitivity (for $\mathrm{X}=\mathrm{O}, \Omega, \Theta$ ):

If $h$ is $\mathrm{X}(g)$ and $g$ is $\mathrm{X}(f)$, then $h$ is $\mathrm{X}(f)$.

- Rule of sums (for $\mathrm{X}=\mathrm{O}, \Omega, \Theta$ ):

If $g_{1} \in \mathrm{X}\left(f_{1}\right)$ and $g_{2} \in \mathrm{X}\left(f_{2}\right)$, then $g_{1}+g_{2} \in \mathrm{X}\left(\max \left\{f_{1}, f_{2}\right\}\right)$.

- Rule of products (for $\mathrm{X}=\mathrm{O}, \Omega, \Theta$ ):

If $g_{1} \in \mathrm{X}\left(f_{1}\right)$ and $g_{2} \in \mathrm{X}\left(f_{2}\right)$, then $g_{1} g_{2} \in \mathrm{X}\left(f_{1} f_{2}\right)$.

- Limit rule:

Suppose the ratio's limit $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$ exists (may be infinite, $\infty$ ).

$$
\text { Then }\left\{\begin{array}{llll}
\text { if } & L=0 & \text { then } & f \in \mathrm{O}(g) \\
\text { if } & 0<L<\infty & \text { then } & f \in \Theta(g) \\
\text { if } & L=\infty & \text { then } & f \in \Omega(g)
\end{array}\right.
$$

## Solving a Recurrence

If the solution of the recurrence $T(n)=T(n-1)+\log _{2} n$;
$T(1)=0$, is in $\Theta(f(n))$, what is $f(n)$ ?
Hint: The factorial $n!\approx n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}$ where $\mathrm{e}=2.718 \ldots$ and $\pi=3.1415 \ldots$ are constants.
A. $2^{n} ;$ B. $\log n$;
C. $n$;
D. $n \log n$;
E. $n^{2}$

Telescoping:
$\left.\begin{array}{ll}T(n) & =T(n-1)+\log _{2} n \\ T(n-1) & =T(n-2)+\log _{2}(n-1) \\ \ldots & \cdots \cdots \\ T(3) & =T(2)+\log _{2} 3 \\ T(2) & =T(1)+\log _{2} 2\end{array}\right\} \rightarrow \begin{cases}T(n) & -T(n-1)=\log _{2} n \\ T(n-1)-T(n-2)= & \log _{2}(n-1) \\ \cdots & \cdots \cdots \\ T(3) & -T(2) \\ T(2) & =\log _{2} 3 \\ & -T(1) \\ & =\log _{2} 2\end{cases}$

## Solving a Recurrence

If the solution of the recurrence $T(n)=T(n-1)+\log _{2} n$;
$T(1)=0$, is in $\Theta(f(n))$, what is $f(n)$ ?
Hint: The factorial $n!\approx n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}$ where $\mathrm{e}=2.718 \ldots$ and $\pi=3.1415 \ldots$ are constants.
A. $2^{n} ;$ B. $\log n$;
C. $n$;
D. $n \log n$;
E. $n^{2}$

Telescoping:
$\left.\begin{array}{ll}T(n) & =T(n-1)+\log _{2} n \\ T(n-1) & =T(n-2)+\log _{2}(n-1) \\ \cdots & \cdots \cdots \\ T(3) & =T(2)+\log _{2} 3 \\ T(2) & =T(1)+\log _{2} 2\end{array}\right\} \rightarrow \begin{cases}T(n)-T(n-1)=\log _{2} n \\ T(n-1)-T(n-2)= & \log _{2}(n-1) \\ \cdots & \cdots \\ T(3) & \cdots \\ T(2)-T(2) & =\log _{2} 3 \\ \underline{T}-T(1) & =\log _{2} 2\end{cases}$

## Solving a Recurrence

If the solution of the recurrence $T(n)=T(n-1)+\log _{2} n$;
$T(1)=0$, is in $\Theta(f(n))$, what is $f(n)$ ?
Hint: The factorial $n!\approx n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}$ where $\mathrm{e}=2.718 \ldots$ and $\pi=3.1415 \ldots$ are constants.
A. $2^{n} ;$ B. $\log n$;
C. $n$;
D. $n \log n$;
E. $n^{2}$

Telescoping:
$\left.\begin{array}{ll}T(n) & =T(n-1)+\log _{2} n \\ T(n-1) & =T(n-2)+\log _{2}(n-1) \\ \ldots & \cdots \cdots \\ T(3) & =T(2)+\log _{2} 3 \\ T(2) & =T(1)+\log _{2} 2\end{array}\right\} \rightarrow \begin{cases}T(n) & -T(n-1)=\log _{2} n \\ T(n-1)-T(n-2) & =\log _{2}(n-1) \\ \cdots & \cdots \cdots \\ \cdots(3) & \cdots \\ T(2) & -T(2) \\ T & =\log _{2} 3 \\ T(1) & =\log _{2} 2\end{cases}$

Summing left and right columns: $T(n)-T(1)=\log _{2} n+\ldots+\log _{2} 2$

## Solving a Recurrence

If the solution of the recurrence $T(n)=T(n-1)+\log _{2} n$;
$T(1)=0$, is in $\Theta(f(n))$, what is $f(n)$ ?
Hint: The factorial $n!\approx n^{n} \mathrm{e}^{-n} \sqrt{2 \pi n}$ where $\mathrm{e}=2.718 \ldots$ and $\pi=3.1415 \ldots$ are constants.
A. $2^{n} ;$ B. $\log n$;
C. $n$;
D. $n \log n$;
E. $n^{2}$

Telescoping:
$\left.\begin{array}{ll}T(n) & =T(n-1)+\log _{2} n \\ T(n-1) & =T(n-2)+\log _{2}(n-1) \\ \cdots & \cdots \cdots \\ T(3) & =T(2)+\log _{2} 3 \\ T(2) & =T(1)+\log _{2} 2\end{array}\right\} \rightarrow \begin{cases}T(n) & -T(n-1)=\log _{2} n \\ T(n-1)-T(n-2)= & \log _{2}(n-1) \\ \cdots & \cdots \cdots \\ T(3) & \cdots \\ T(2) & -T(2) \\ =\log _{2} 3\end{cases}$

Summing left and right columns: $T(n)-T(1)=\log _{2} n+\ldots+\log _{2} 2$
$T(n)=0+\log _{2} 2+\log _{2} 3+\ldots+\log _{2}(n-1)+\log _{2} n=\log _{2}(n!)$
$=n \log _{2} n-n \log _{2} \mathrm{e}+\frac{1}{2}\left(\log _{2} n+\log _{2} \pi+1\right)$, i.e.,
$T(n) \in \Theta(n \log n)$

## Data Structures and Algorithms

Static ADT: 1D and multidimensional arrays.
Dynamic ADT:

| Linked lists | Stacks, queues | Priority queues, heaps |
| :--- | :--- | :--- |
| Tables (associative lists,dictionaries) | Hash tables |  |
| Trees | Binary search trees (BST): AVL, red-black, AA |  |
|  | Multiway search trees: B-trees |  |
| Digraphs / graphs |  | Disjoint sets |

Algorithms:

- Sort/select: insertion-, merge-, quick-, heap sort; quickselect
- Search: sequential, binary (dynamic - binary search tree)
- Hash function: division, folding, truncation, middle-squaring
- Hashing: separate chaining (SC), open addressing (OALP, OADH)
- Graph: DFS/BFS/PFS, connected components, MST (Kruskal, Prim), matching, SSSP (Dijkstra, Bellman-Ford), APSP (Floyd)


## Sorting Algorithms

| Algorithm | Complexity for $n$ items |  | Comments |
| :---: | :---: | :---: | :---: |
|  | Worst case | Average case |  |
| Data sorting - comparison-based algorithms |  |  |  |
| Insertion sort | $\mathrm{O}\left(n^{2}\right)$ | $\mathrm{O}\left(n^{2}\right)$ | Selection, Bubble sort |
| Mergesort | $\mathrm{O}(n \log n)$ | $\mathrm{O}(n \log n)$ | Extra space O( $n$ ) |
| Quicksort | $\mathrm{O}\left(n^{2}\right)$ | $\mathrm{O}(n \log n)$ | Randomised pivots: the worst case $\mathrm{O}(n \log n)$ |
| Heapsort | $\mathrm{O}(n \log n)$ | $\mathrm{O}(n \log n)$ | Priority queue (heap) |
| Data sorting - non-comparison-based algorithms |  |  |  |
| Counting sort | $\mathrm{O}(n)$ | $\mathrm{O}(n)$ | Constrained range of integer search keys |
| Data selection - comparison-based algorithms |  |  |  |
| Quickselect | $\mathrm{O}\left(n^{2}\right)$ | $\mathrm{O}(n)$ | Randomised pivots: the worst case $\mathrm{O}(n)$ |

## Search Algorithms

| Algorithm | Complexity for $n$ items |  | Comments |
| :---: | :---: | :---: | :---: |
|  | Worst case | Average case |  |
| Data search - comparison-based algorithms |  |  |  |
| Seq search | $\mathrm{O}(n)$ | $\mathrm{O}(n)$ | Unsorted data list |
| Binary search | $\mathrm{O}(\log n)$ | $\mathrm{O}(\log n)$ | Sorted static list |
| BST | $\mathrm{O}(n)$ | $\mathrm{O}(\log n)$ | Balancing: $\mathrm{O}(\log n)$ |
| B-trees | Tree height | Ave height | Opt height: $\approx \log _{m} n$ |
| Algorithm | Time $T_{\text {... }}(\lambda)$ of search for $m$ items |  | Comments |
|  | Unsuccessful | Successful |  |
| Data search - hash tables of size $n$ with load factor $\lambda=\frac{m}{n}$ |  |  |  |
| SC | $1+\lambda$ | $1+\frac{\lambda}{2}$ | $\lambda \geq 1$ |
| OALP | $\frac{1}{2}\left(1+\left(\frac{1}{1-\lambda}\right)^{2}\right)$ | $\frac{1}{2}\left(1+\frac{1}{1-\lambda}\right)$ | $\lambda \leq 0.75$ |
| OADH | $\frac{1}{1-\lambda}$ | $\frac{1}{\lambda} \ln \left(\frac{1}{1-\lambda}\right)$ | $\lambda \leq 0.75$ |

## Digraphs: Computer Representations

$$
G=\left(\begin{array}{l}
V=\{0,1,2,3,4\} \\
\quad E=\{(0,2),(1,0),(1,2),(1,3),(3,1),(4,2),(3,4)\} \quad)
\end{array}\right.
$$

Adjacency lists representing the set $E$ of arcs:

$$
\{\{2\},\{0,2,3\}, \underbrace{\{.\}}_{\emptyset},\{1,4\},\{2\}\} \text { or } \begin{array}{lll}
2 & & \\
0 & 2 & 3 \\
1 & 4 & \\
2 & & \\
\hline
\end{array}
$$

Adjacency matrix representing the set $E$ of arcs:

$$
\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

## Sub(di)graphs

$$
\begin{aligned}
G=(\quad & V=\{0,1,2,3,4\} \\
\quad & E=\{(0,2),(1,0),(1,2),(1,3),(3,1),(4,2),(3,4)\} \quad)
\end{aligned}
$$

Sub(di)graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right) ; V^{\prime} \subseteq V$; if $(u, v) \in E^{\prime} \subseteq E$, then $u, v \in V^{\prime}$ :

$$
\begin{aligned}
& G^{\prime}=\left(V^{\prime}=\{1,2,3\}, E^{\prime}=\{(1,2),(3,1)\}\right) \\
& G^{\prime}=\left(V^{\prime}=\{0,1,2\}, E^{\prime}=\{(1,2)\}\right)
\end{aligned}
$$

Induced sub(di)graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right) ; E^{\prime}=\left\{(u, v) \in E: u, v \in V^{\prime}\right\}$ :

$$
\begin{aligned}
& G^{\prime}=\left(V^{\prime}=\{1,2,3\}, E^{\prime}=\{(1,2),(1,3),(3,1)\}\right) \\
& G^{\prime}=\left(V^{\prime}=\{0,1,2\}, E^{\prime}=\{(0,2),(1,0),(1,2)\}\right)
\end{aligned}
$$

Spanning sub(di)graph: $G^{\prime}=\left(V^{\prime}, E^{\prime}\right) ; V^{\prime}=V ; E^{\prime} \subseteq E$

$$
\begin{aligned}
& G^{\prime}=\left(V^{\prime}=\{0,1,2,3,4\}, E^{\prime}=\{(0,2),(1,2),(3,4)\}\right) \\
& G^{\prime}=\left(V^{\prime}=\{0,1,2,3,4\}, E^{\prime}=\{(1,0),(1,2),(1,3),(3,4)\}\right)
\end{aligned}
$$

## Classes of Traversal Arcs



Search forest $F$ : a set of disjoint trees spanning a digraph $G$ after its traversal.

An arc $(u, v) \in E(G)$, i.e., $(\mathrm{c}, \mathrm{d})$, is a tree arc if it belongs to one of the trees of $F$ :

```
seen(c) < seen (d) < done (d) < done(c)
```

The arc $(u, v)$, being not a tree arc, is

- forward if $u$ is an ancestor of $v$ in $F$ :
$\operatorname{seen}(\mathrm{a})<\operatorname{seen}(\mathrm{f})<\operatorname{done}(\mathrm{f})<\operatorname{done}(\mathrm{a})$
- back if $u$ is a descendant of $v$ in $F$ : $\operatorname{seen}(\mathrm{b})<\operatorname{seen}(\mathrm{d})<\operatorname{done}(\mathrm{d})<\operatorname{done}(\mathrm{b})$, and
- cross arc if neither $u$ nor $v$ is an ancestor of the other in $F$ :

$$
\operatorname{seen}(\mathrm{a})<\operatorname{done}(\mathrm{a})<\operatorname{seen}(\mathrm{b})<\operatorname{done}(\mathrm{b})
$$

## DFS / BFS / PFS in Graph Algorithms

DFS / BFS complexity:

- $\Theta(n+m)$ - adjacency lists
- $\Theta\left(n^{2}\right)$ - an adjacency matrix

PFS compexity:

- $\Omega\left(n^{2}\right)$ - an array of keys
- $\Omega(n \log n)$ - a binary heap


## Graph algorithms:

- Cycle detection: by running the BFS.
- Girth computation: by running the BFS or DFS.
- Topological ordering: zero-indegree sorting or the DFS.
- Strongly connected components: two runs of the DFS.
- Maximum matching: $\mathrm{O}\left(n^{2} m\right)$
- Finding an augmenting path: $\mathrm{O}(m)$ with adjacency lists.
- At most $O(n)$ augmenting paths to be found.
- An augmenting path for each of $\mathrm{O}(n)$ non-matched vertices.
- Repeating the process for each modified matching.


## Girth Example: Petersen Graph



## Girth Example: Petersen Graph BFS step 1



BFS starting at the vertex $2:\left\{\begin{array}{r|l|l|l}v \in V & 12345678910 \\ \hline d[v] & 10 \cdots 11 \cdot \cdots \cdot\end{array}\right\}$

## Girth Example: Petersen Graph

 BFS step 2

## Girth Example: Petersen Graph:



As is easily checked, the Petersen graph has girth of 5 .

## Girth Example: Petersen Graph:

## Cycles



## Graph Algorithms: Weighted (Di)graphs

Single-source shortest path (SSSP):

- Dijkstra's algorithm:
- $\Theta\left(n^{2}\right)$ - scanning an array for the minimum distance.
- $\mathrm{O}((n+m) \log n)$ - a priority queue (a binary heap).
- $\mathrm{O}(m+n \log n)$ - with a Fibonacci heap.
- Bellman-Ford algorithm:
- $\Theta\left(n^{3}\right)$ - an adjacency matrix.
- $\Theta(n, m)$ - adjacency lists

All-pairs shortest paths (APSP):

- Floyd's algorithm: $\Theta\left(n^{3}\right)$.

Minimal spanning tree (MST):

- Prim's algorithm: $\mathrm{O}(m+n \log n)$ (like Dijkstra's).
- Kruskal's algorithm: $\mathrm{O}(m \log n)$.

