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Girth of a Graph (Digraph)

For a graph (with a cycle), the length of the shortest cycle is called
the girth of the graph.

• If the graph has no cycles, then the girth is undefined, but
may be viewed as +∞.

• For a digraph, we use the term girth for its underlying graph.

• We use a (maybe, non-standard) term directed girth for the
length of the smallest directed cycle.
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Undefined
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Girth = 3

0 1
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Girth = 4
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Girth / Directed Girth: An Example

0

1 2 3

4 5
Directed girth: 4

0

1 2 3

4 5

Girth (underlying graph): 3

In general, girth ≤ directed girth

Exception: a directed graph can have a cycle of length 2, which is not a
cycle in the underlying graph.
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Computing the Girth of a Graph G

Length of a shortest cycle containing a given vertex v in G:

• Do BFSvisit(v) (if v is on at least one cycle, it will be found):
• If a GREY neighbour is met, i.e., if an edge (x, y) is explored

from x, but y is already GREY, continue only to the end of the
current level and then stop.

• For each edge (x, y), as above on this level:
• Let v be the lowest common ancestor of x and y in the BFS

tree.
• Then there is a cycle containing x, y, v of length

l = d(v, x) + d(v, y) + 1 ◦).
• Report the minimum l obtained along the current level.

To compute girth, run the above procedure once for each
v ∈ V (G) and take the minimum.

◦) d(v, u) – the length of a path of tree arcs from v to u.
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Computing the Girth of a Graph G

v root

u1 u2

x y

Cross edge (x, y)

v root

u1 u2

x y

Cross edge (x, y)

(x, y) is a cross edge because neither x, nor y is an ancestor of other in the BFS tree.

Length of the cycle containing the root v: dist[x] + dist[y] + 1

(dist[u] – distance from the root v)
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Towards Finding Girth of a Graph G

0 1

2 3 4

5 6
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 0 ]

u = 0← Q.peek()

adjacency(0) = {1, 2}

d[0] = 0
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 1 0 ]

v = 1⇐ {1, 2}
pred[1] = 0

d[1] = d[0] + 1 = 1

d[0] = 0

d[1] = 1
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 2 1 0 ]

v = 2⇐ {1, 2}
pred[2] = 0

d[2] = d[0] + 1 = 1

d[0] = 0

d[1] = 1

d[2] = 1
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 2 1 ]

Q : delete()d[0] = 0

d[1] = 1

d[2] = 1
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 2 1 ]

u = 1← Q.peek()

adjacency(1) = {4, 5}

d[0] = 0

d[1] = 1

d[2] = 1
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 4 2 1 ]

v = 4⇐ {4, 5}
pred[4] = 1

d[4] = d[1] + 1 = 2

d[0] = 0

d[1] = 1

d[2] = 1

d[4] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 5 4 2 1 ]

v = 5⇐ {4, 5}
pred[5] = 1

d[5] = d[1] + 1 = 2

d[0] = 0

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 5 4 2 ]

Q : delete()d[0] = 0

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 5 4 2 ]

u = 2← Q.peek()

adjacency(2) = {3}

d[0] = 0

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 3 5 4 2 ]

v = 3⇐ {3}
pred[3] = 2

d[3] = d[2] + 1 = 2

d[0] = 0

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2

d[3] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 3 5 4 ]

Q : delete()

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2

d[3] = 2
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Towards Finding Girth of a Graph G: BFSvisit(0)

0 1

2 3 4

5 6

Q : [ 3 5 4 ]

u = 4← Q.peek()

adjacency(4) = {3, 6}

As the vertex 3
is GREY, complete
the current level
and stop.

Vertex 0 is the
common ancestor:
so (0, 1, 4, 3, 2, 0)
is a cycle of length
d[4]+d[3]+1 = 5.

d[1] = 1

d[2] = 1

d[4] = 2

d[5] = 2

d[3] = 2
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Towards Finding the Girth of a Graph BFS from the node 3

0 1

2

3

4

5 6

7 8

3

Finding the shortest cycle containing the node 3 by BFS.
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Towards Finding the Girth of a Graph BFS from the node 3

0 1

2

3

4

5 6

7 8

3

2 3

1

dist[3] = 0

2

2 1

3 2

dist[v] = 0

1

2

3

3

2 6

0 5 4 8

1 7

cross edge; the same subtree
cross edge; different subtrees
w.r.t. the root 3

The shortest cycle containing the node 3 is of length 6 (= 3 + 2 + 1).
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Towards Finding the Girth of a Graph BFS from the node 4

0 1

2

3

4

5 6

7 8

4

Finding the shortest cycle containing the node 4 by BFS.
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Towards Finding the Girth of a Graph BFS from the node 3

0 1

2

3

4

5 6

7 8

4

2 1

2

0

2 1

1 2

dist[v] = 0

1

2

4

1 6 7

0 5 8 3

cross edge; the same subtree
cross edge; different subtrees
w.r.t. the root 3

The shortest cycle containing the node 4 is of length 4 (= 1 + 2 + 1).
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Towards Finding the Girth: Cycle Length

Cross edge (x, y):

• If dist[x] = dist[y], then the cycle has the odd length:
dist[x] + dist[y] + 1 = 2 · dist[x] + 1.

• If dist[y] = dist[x] + 1, then the cycle has the even length:
dist[x]+dist[y]+1 = dist[x]+(dist[x]+1)+1 = 2·dist[x]+2.

Let (x, y) be a found by BFS cross edge of an undirected graph.
Then either dist[x] = dist[y] or |dist[x]− dist[y]| = 1.

Sketch of the proof: Suppose that |dist[x]− dist[y]| > 1.

cross edge

root

x

y
dist[y] > dist[x] + 1

dist[x]

dist[x] + 1

Then there is a contradiction: the
shortest path from the root to y will
contain the cross edge, so that greater
than dist[x] + 1 values of dist[y] exceed
the actual distance from the root to y.
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Towards Finding the Girth of a Graph

1

2 3 4 5

6

7 8 9 10

The shortest cycle containing the vertex 1 has length of 6.

• Just the same: for the vertex 2, 5, 6, 7, and 10.

The shortest cycle containing the vertex 3 has length of 4.

• Just the same: for the vertex 4, 8, and 9.

The girth of this graph is 4.
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k-colourable and Bipartite Graphs

A graph G = (V,E) is k-colourable, where k is a positive integer,
if V (G) can be partitioned into k nonempty disjoint subsets, such that
each edge in E(G) joins two vertices in different subsets (colours).

A 2-colourable graph is called a bipartite graph.
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Bipartite Graphs (Digraphs)

A graph (digraph) G = (V,E) is bipartite if V (G) can be
partitioned into two nonempty disjoint subsets, {V0, V1}, such that
each edge in E(G) has one endpoint in V0 and one in V1.
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Equivalence of Bipartite and 2-colourable Graphs

Theorem 5.29: The following conditions are equivalent:

• A graph G is bipartite.

• A graph G has a 2-coloring.

• A graph G contains no odd length cycles.

Proof: Bipartition subsets (V0, V1) allow for 2-colouring, and vice versa.

• A cycle must have even length, since its start and end vertices have
the same colour. �

A version of BFS can check if a graph is bipartite (2-colourable):

• If each vertex at a BFS level i can take the same colour i mod 2,
then each edge is between the vertices of different colours.

• Otherwise, there are adjacent vertices at the same level and
odd-length cycles.
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Maximal and Maximum Matchings in Graphs

A matching in a graph is a set of pairwise non-adjacent edges.

• Each vertex can be in at most one edge of the matching.

a b

c d

e f

a b

c d

e f

Matching

a b

c d

e f

Maximal matching

a b

c d

e f

Maximum matching

• A maximal matching is a matching, which is not a proper
subset of any other matching.

• A maximum matching is one with the largest possible
number of edges (over all possible matchings).
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Maximal vs. Maximum Matchings in a Bipartite Graph G

Simple greedy search for a maximal matching:

• Iterating over all edges e ∈ E(G).

• Adding each edge to a maximal matching M if it is
non-adjacent to anything already in M .

A maximal matching may have fewer edges than a more desirable
maximum matching.

1

A

2

B

3

C

4

D

Maximal matching
M =

{
(1,A); (2,D); (3,C)

}
1

A

2

B

3

C

4

D

Maximum matching
M =

{
(1,A); (2,B); (3,C); (4,D

}
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Maximal vs. Maximum Matchings in a Bipartite Graph G

Ann

Cher

Eve

Bob

Doug

Fred

Ann

Cher

Eve

Bob

Doug

Fred

Maximal (left) and maximum (right) matching M in G.

• Given a matching M , an alternating path is a path in which
the edges of the path alternate from being in the matching
and not: e.g., Ann–Bob–Cher–Doug–Eve (left).

• An augmenting path is an alternating path that starts from
and ends on unmatched vertices: e.g., Eve–Doug–Cher–Fred (left).
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Improving Maximal Matching M in a Bipartite Graph G

Ann

Cher

Eve

Bob

Doug

Fred

Ann

Cher

Eve

Bob

Doug

Fred

Maximal (left) and maximum (right) matching M in G.

• There is always one more non-matching edge than matching edge in
an augmenting path: e.g., Eve–Doug–Cher–Fred (left).

• Thus find an augmenting path, remove from M its matching edges
(e.g., Doug–Cher), and add to M its non-matching edges (e.g.,

Fred–Cher and Doug–Eve).

• If there is no augmenting path, M is a maximum matching.
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Examples of Maximum Matchings

Example 1: Worker-Assignment Problem

• Given: A set of workers; a set of tasks to be assigned.

• Constraints:
• Each worker is able to perform a subset of the tasks.
• Each worker can do at most one task at a time.

• Goal: Assign (match) as many workers as possible to as many
of the tasks.

Example 2: Marriage Problem

• Given: A set of men and women (as vertices).

• Constraints: Edges between compatible relationships.

• Goal: Marry as many couples as possible.
• It is the same as finding a maximum matching in the

relationship graph.
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Finding Maximum Matchings in Bipartite Graphs

Theorem 5.34: There exists a polynomial-time algorithm to find a
maximum matching in a bipartite graph.

not in M

in M

not in M

in M

not in M

in M

not in M

pred[u]

u = pred[v]

v – unmatched

Basic idea of augmenting
a given matching M :

1 Start from an unmatched vertex x.

2 Build a tree (via BFS) of alternating
paths away from x.

3 If another unmatched vertex is
reached, an augmenting path is found.

4 If all vertices are visited, then no
augmenting path exists starting at x.
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Finding an Augmenting Path: Bipartite graph G; matching M

Unmatched vertex x; queue Q; arrays pred[0..n− 1]; status[0..n− 1]

for each u ∈ V (G) do
status[u]←WHITE; pred[u]← NULL

status[x]← EVEN
Q.insert(x)

Q.is empty()?
yes

return no augmenting paths containing x
no

u← Q.pop()

status[u] = EVEN?
no

v ← matched vertex
of u from M

status[v] = WHITE?
yes

status[v]← EVEN
pred[v]← u
Q.insert(v)

no

yes
for each v adjacent to u do

status[v] = WHITE?
yes

status[v]← ODD
pred[v]← u

is v unmatched in M?

no

Q.insert(v)no

yes

return path x, . . . , pred[pred[u]], pred[u], u, v
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Finding a Maximum Matching: Total Running Time

One invocation of findAugmentingPath (Slide 35) can be carried out in
time O(m) for adjacency list representation.

• After an augmenting path is found, the best matching increases by
one.

• A maximum matching is bounded by
⌊
n
2

⌋
.

• Thus only at most O(n) augmenting paths have to be found.

• Potentially, findAugmentingPath should be called once for each
unmatched vertex, which is bounded by O(n).

• Because the process has to be repeated for each modified matching,
the total running time to find a maximum matching is at most
O(n2m).

• The above algorithm can be improved to O(mn) by traversing and
computing an “alternating path forest”.

• Further improvements lead to time O(m
√
n).
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Finding an Augmenting Parh: An Example

A

1

B

2

C

3

D

4

M =
{

(2, A); (3, B); ((4, C)
}
⇒

BFS from the unmatched vertex 1

Augmenting path P found:

M ′ = (M −
{

(3, B)
}

⋃{
(1, B), (3, D)

}
|M ′| = 4 > |M | = 3

M ′ =
{

(1, B); (2, A); (3, D); (4, C)
}

1

A B

2 3

C D

4

⇑
unmatched

not in M

in M

not in M
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Finding an Augmenting Path: An Example

A

1

B

2

C

3

D

4

M =
{

(2, A); (3, B); ((4, C)
}
⇒

BFS from the unmatched vertex 1

Augmenting path P found:

M ′ = (M −
{

(3, B)
}

⋃{
(1, B), (3, D)

}
|M ′| = 4 > |M | = 3

M ′ =
{

(1, B); (2, A); (3, D); (4, C)
}

1

A B

2 3

C D

4

⇑
unmatched

not in M

in M

not in M
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Weighted (Di)graphs

Very common in applications; also called “networks”.

• Optimisation on networks is important in operations research,
signal processing, navigation etc.

• Each arc carries a real number, or “weight” , which is usually
positive and represents cost, distance, or time (can be +∞).

• Representation: weighted adjacency matrix or double
adjacency list.

Standard optimisation problems:

• Finding a minimum- or maximum-weight path between given
nodes (covered in COMPSCI 220).

• Minimum or maximum spanning tree (COMPSCI 220, 225).

• Optimal cycle or tour (e.g., a computationally hard travelling
salesman problem (TSP), matching, flow etc.
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Travelling Salesman: An Approximate Solution

http://blogs.mathworks.com/pick/2011/10/14/traveling-salesman-problem-genetic-algorithm/
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Weighted (Di)graphs: Definitions

A weighted digraph is a pair (G, c) where G is a digraph and c is
a cost function, associating a real number to each arc of G.

• c(u, v) is interpreted as the cost of using arc (u, v).
• An ordinary digraph is a weighted digraph with the unit cost

of each arc.

A weighted graph is a symmetric digraph where each pair of
antiparallel arcs has the same weight.

• Computer representations: special conventions if there is no arc
between u and v.

• An entry of null or 0 in a weighted adjacency matrix if the arc
does not exist.

• This entry is equal to ∞ for primitive data types.
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Computer Representations of Weighted Digraphs

Cost matrices:
0 1 4 0
0 0 0 2
0 2 0 5
2 0 0 0


0

0

1

1

2

2

3

3



0 4 1 0 4 0
4 0 0 2 3 4
1 0 0 0 3 0
0 2 0 0 0 1
4 3 3 0 0 2
0 4 0 1 2 0



0

0

1

1

2

2

3

3

4

4

5

5

42 / 45



Outline Girth Bipartition Matching Weighting Distance/diameter

Computer Representations of Weighted Digraphs

Weighted Adjacency Lists:

1 1 2 4
3 2
1 2 3 5
0 2

0 :

1 :

2 :

3 :

1 4 2 1 4 4
0 4 3 2 4 3 5 4
0 1 4 3
1 2 5 1
0 4 1 3 2 3 5 2
1 4 3 1 4 2

0 :

1 :

2 :

3 :

4 :

5 :
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Diameter of a Strongly Connected Digraph

Definition 6.3

The diameter of a strongly connected digraph G is the maximum
of distances d(u, v) over all nodes u, v ∈ V (G).

• If a digraph is not strongly connected, the diameter is undefined.

• Two “reasonable” definitions: +∞ or n since no path in G can
have length more than n− 1.

• Distance matrix – d(u, v)]; u, v ∈ V (G); by running BFSvisit

from each node in turn (running time Θ(n2 + nm)).

21

0

3 4

[
d(u, v)

]
u,v∈V (G)

=


0 1 1 2 2
1 0 1 2 2
1 1 0 1 1
2 2 1 0 1
2 2 1 1 0


diameter = 2

radius = 1

21

0

3 4


0 ∞ 1 ∞ ∞
1 0 1 1 2
∞ ∞ 0 ∞ ∞
2 1 2 0 1
∞ ∞ 1 ∞ 0


diameter = ∞
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Distance Matrix: Eccentricity of a Node

21

0

3 4

[d(u,v)]︷ ︸︸ ︷
0 1 1 2 2
1 0 1 2 2
1 1 0 1 1
2 2 1 0 1
2 2 1 1 0


Eccentricity of a node
u ∈ V (G): ec[u] = max

v∈V
d(u, v):

u 0 1 2 3 4

ec[u] 2 2 1 2 2

Diameter of G: max
u∈V

ec[u] = 2.

Radius of G: min
u∈V

ec[u] = 1.

21

0

3 4

[d(u,v)]︷ ︸︸ ︷
0 ∞ 1 ∞ ∞
1 0 1 1 2
∞ ∞ 0 ∞ ∞
2 1 2 0 1
∞ ∞ 1 ∞ 0


Eccentricity of a node
u ∈ V (G): ec[u] = max

v∈V
d(u, v):

u 0 1 2 3 4

ec[u] ∞ 2 ∞ 2 ∞

Diameter of G: max
u∈V

ec[u] =∞.

Radius of G: min
u∈V

ec[u] = 2.

Distances in weighted (di)graphs (G, c): more complex computations.
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