

Graph Colouring and Optimisation Problems <u>Cycles</u> Girth Bipartite graphs Weighting

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

1/45

- 1 Cycles and girth
- 2 Bipartite graphs
- 3 Maximum matchings in bipartite graphs
- **4** Weighted digraphs and optimisation problems
- **5** Distance and diameter in the unweighted case

For a graph (with a cycle), the length of the shortest cycle is called the **girth** of the graph.

- If the graph has no cycles, then the girth is undefined, but may be viewed as $+\infty$.
- For a digraph, we use the term girth for its underlying graph.
- We use a (maybe, non-standard) term **directed girth** for the length of the smallest directed cycle.

Girth / Directed Girth: An Example

In general, girth \leq directed girth

Exception: a directed graph can have a cycle of length 2, which is not a cycle in the underlying graph.

< (51 b)

Length of a shortest cycle containing a given vertex v in G:

- Do BFSvisit(v) (if v is on at least one cycle, it will be found):
 - If a GREY neighbour is met, i.e., if an edge (x, y) is explored from x, but y is already GREY, continue only to the end of the current level and then stop.
 - For each edge (x, y), as above on this level:
 - Let v be the lowest common ancestor of x and y in the BFS tree.
 - Then there is a cycle containing $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{v}$ of length
 - $l = d(v, x) + d(v, y) + 1^{\circ}.$
 - Report the minimum l obtained along the current level.

To compute girth, run the above procedure once for each $v \in V(G)$ and take the minimum.

°) d(v, u) – the length of a path of tree arcs from v to u.

Computing the Girth of a Graph G

Length of a shortest cycle containing a given vertex v in G:

- Do BFSvisit(v) (if v is on at least one cycle, it will be found):
 - If a GREY neighbour is met, i.e., if an edge (x, y) is explored from x, but y is already GREY, continue only to the end of the current level and then stop.
 - For each edge (x, y), as above on this level:
 - Let v be the lowest common ancestor of x and y in the BFS tree.
 - Then there is a cycle containing x, y, v of length
 - $l = d(v, x) + d(v, y) + 1^{\circ}.$
 - Report the minimum l obtained along the current level.

To compute girth, run the above procedure once for each $v \in V(G)$ and take the minimum.

°) d(v,u) – the length of a path of tree arcs from v to u.

Computing the Girth of a Graph G

Length of a shortest cycle containing a given vertex v in G:

- Do BFSvisit(v) (if v is on at least one cycle, it will be found):
 - If a GREY neighbour is met, i.e., if an edge (x, y) is explored from x, but y is already GREY, continue only to the end of the current level and then stop.
 - For each edge (x, y), as above on this level:
 - Let v be the lowest common ancestor of \boldsymbol{x} and \boldsymbol{y} in the BFS tree.
 - $\bullet\,$ Then there is a cycle containing x,y,v of length
 - $l = d(v, x) + d(v, y) + 1^{\circ}.$
 - Report the minimum l obtained along the current level.

To compute girth, run the above procedure once for each $v \in V(G)$ and take the minimum.

°) d(v, u) – the length of a path of tree arcs from v to u.

Length of a shortest cycle containing a given vertex v in G:

- Do BFSvisit(v) (if v is on at least one cycle, it will be found):
 - If a GREY neighbour is met, i.e., if an edge (x, y) is explored from x, but y is already GREY, continue only to the end of the current level and then stop.
 - For each edge (x, y), as above on this level:
 - Let v be the lowest common ancestor of \boldsymbol{x} and \boldsymbol{y} in the BFS tree.
 - Then there is a cycle containing x, y, v of length $l = d(v, x) + d(v, y) + 1^{\circ}$.
 - Report the minimum l obtained along the current level.

To compute girth, run the above procedure once for each $v \in V(G)$ and take the minimum.

 $^{\circ)}$ d(v,u) – the length of a path of tree arcs from v to u.

Computing the Girth of a Graph G

Towards Finding Girth of a Graph G

10/45

^{13 / 45}

^{14 / 45}

Towards Finding Girth of a Graph G: BFSvisit(0)

^{19/45}

Towards Finding the Girth of a Graph

 BFS from the node 3

Finding the shortest cycle containing the node 3 by BFS.

The shortest cycle containing the node 3 is of length 6 (= 3 + 2 + 1).

ine **Girth** Bipartition Matching Weighting Distance/c

Towards Finding the Girth of a Graph

 $\mathsf{BFS}\xspace$ from the node 4

Finding the shortest cycle containing the node 4 by BFS.

The shortest cycle containing the node 4 is of length 4 (= 1 + 2 + 1).

Towards Finding the Girth: Cycle Length

Cross edge (x, y):

- If dist[x] = dist[y], then the cycle has the odd length: $dist[x] + dist[y] + 1 = 2 \cdot dist[x] + 1$.
- If dist[y] = dist[x] + 1, then the cycle has the even length: $dist[x]+dist[y]+1 = dist[x]+(dist[x]+1)+1 = 2 \cdot dist[x]+2$.

Let (x, y) be a found by BFS cross edge of an undirected graph. Then either dist[x] = dist[y] or |dist[x] - dist[y]| = 1.

Sketch of the proof: Suppose that |dist[x] - dist[y]| > 1.

Then there is a contradiction: the shortest path from the root to y will contain the cross edge, so that greater than dist[x] + 1 values of dist[y] exceed the actual distance from the root to y.

Outline

Girth

Towards Finding the Girth of a Graph

The shortest cycle containing the vertex 1 has length of 6.

• Just the same: for the vertex 2, 5, 6, 7, and 10.

The shortest cycle containing the vertex 3 has length of 4.

• Just the same: for the vertex 4, 8, and 9.

The girth of this graph is 4.

A graph G = (V, E) is k-colourable, where k is a positive integer, if V(G) can be partitioned into k nonempty disjoint subsets, such that each edge in E(G) joins two vertices in different subsets (colours).

A 2-colourable graph is called a bipartite graph.

A graph (digraph) G = (V, E) is **bipartite** if V(G) can be partitioned into two nonempty disjoint subsets, $\{V_0, V_1\}$, such that each edge in E(G) has one endpoint in V_0 and one in V_1 .

Equivalence of Bipartite and 2-colourable Graphs

Theorem 5.29: The following conditions are equivalent:

- A graph G is bipartite.
- A graph G has a 2-coloring.
- A graph G contains no odd length cycles.

Proof: Bipartition subsets (V_0, V_1) allow for 2-colouring, and vice versa.

• A cycle must have even length, since its start and end vertices have the same colour.

A version of BFS can check if a graph is bipartite (2-colourable):

- If each vertex at a BFS level *i* can take the same colour *i* mod 2, then each edge is between the vertices of different colours.
- Otherwise, there are adjacent vertices at the same level and odd-length cycles.

Equivalence of Bipartite and 2-colourable Graphs

Theorem 5.29: The following conditions are equivalent:

- A graph G is bipartite.
- A graph G has a 2-coloring.
- A graph G contains no odd length cycles.

Proof: Bipartition subsets (V_0, V_1) allow for 2-colouring, and vice versa.

• A cycle must have even length, since its start and end vertices have the same colour.

A version of BFS can check if a graph is bipartite (2-colourable):

- If each vertex at a BFS level *i* can take the same colour *i* mod 2, then each edge is between the vertices of different colours.
- Otherwise, there are adjacent vertices at the same level and odd-length cycles.

A matching in a graph is a set of pairwise non-adjacent edges.

• Each vertex can be in <u>at most</u> one edge of the matching.

- A maximal matching is a matching, which is not a proper subset of any other matching.
- A maximum matching is one with the largest possible number of edges (over all possible matchings).

Maximal vs. Maximum Matchings in a Bipartite Graph G

Simple greedy search for a maximal matching:

- Iterating over all edges $e \in E(G)$.
- Adding each edge to a maximal matching M if it is non-adjacent to anything already in M.

A maximal matching may have fewer edges than a more desirable maximum matching.

Maximal vs. Maximum Matchings in a Bipartite Graph G

Maximal (left) and **maximum** (right) matching M in G.

- Given a matching *M*, an **alternating path** is a path in which the edges of the path alternate from being in the matching and not: e.g., Ann-Bob-Cher-Doug-Eve (left).
- An augmenting path is an alternating path that starts from and ends on unmatched vertices: e.g., Eve-Doug-Cher-Fred (left).

Improving Maximal Matching M in a Bipartite Graph G

Maximal (left) and maximum (right) matching M in G.

- There is always one more non-matching edge than matching edge in an augmenting path: e.g., Eve-Doug-Cher-Fred (left).
- Thus find an augmenting path, remove from M its matching edges (e.g., Doug-Cher), and add to M its non-matching edges (e.g., Fred-Cher and Doug-Eve).
- If there is no augmenting path, M is a maximum matching.

Example 1: Worker-Assignment Problem

- Given: A set of workers; a set of tasks to be assigned.
- Constraints:
 - Each worker is able to perform a subset of the tasks.
 - Each worker can do at most one task at a time.
- **Goal**: Assign (match) as many workers as possible to as many of the tasks.

Example 2: Marriage Problem

- **Given**: A set of men and women (as vertices).
- Constraints: Edges between compatible relationships.
- Goal: Marry as many couples as possible.
 - It is the same as finding a maximum matching in the relationship graph.

Finding Maximum Matchings in Bipartite Graphs

Theorem 5.34: There exists a polynomial-time algorithm to find a maximum matching in a bipartite graph.

Basic idea of augmenting a given matching M:

- 1 Start from an unmatched vertex x.
- 2 Build a tree (via BFS) of alternating paths away from *x*.
- **3** If another unmatched vertex is reached, an augmenting path is found.
- If all vertices are visited, then no augmenting path exists starting at x.

Finding a Maximum Matching: Total Running Time

One invocation of findAugmentingPath (Slide 35) can be carried out in time ${\rm O}(m)$ for adjacency list representation.

- After an augmenting path is found, the best matching increases by one.
- A maximum matching is bounded by $\lfloor \frac{n}{2} \rfloor$.
- Thus only at most O(n) augmenting paths have to be found.
- Potentially, findAugmentingPath should be called once for each unmatched vertex, which is bounded by O(n).
- Because the process has to be repeated for each modified matching, the total running time to find a maximum matching is at most $O(n^2m)$.
- The above algorithm can be improved to ${\rm O}(mn)$ by traversing and computing an "alternating path forest".
- Further improvements lead to time $O(m\sqrt{n})$.

Bipartition Matching Finding an Augmenting Path: An Example not in MB D B $M = \{(2, A); (3, B); ((4, C))\} \Rightarrow$ in M3 2 Augmenting path P found: not in M $M' = (M - \{(3, B)\})$ $\bigcup \{(1, B), (3, D)\}$ DCunmatched |M'| = 4 > |M| = 34 $M' = \{(1, B); (2, A); (3, D); (4, C)\}$ イロン イロン イヨン イヨン 三日

Weighted (Di)graphs

Very common in applications; also called "networks".

- Optimisation on networks is important in operations research, signal processing, navigation etc.
- Each arc carries a real number, or "weight", which is usually positive and represents cost, distance, or time (can be $+\infty$).
- Representation: weighted adjacency matrix or double adjacency list.

Standard optimisation problems:

- Finding a minimum- or maximum-weight path between given nodes (covered in COMPSCI 220).
- Minimum or maximum spanning tree (COMPSCI 220, 225).
- Optimal cycle or tour (e.g., a computationally hard travelling salesman problem (TSP), matching, flow etc.

Travelling Salesman: An Approximate Solution

http://blogs.mathworks.com/pick/2011/10/14/traveling-salesman-problem-genetic-algorithm/

イロト イポト イヨト イヨト

A weighted digraph is a pair (G, c) where G is a digraph and c is a cost function, associating a real number to each arc of G.

- c(u, v) is interpreted as the cost of using arc (u, v).
- An ordinary digraph is a weighted digraph with the unit cost of each arc.

A **weighted graph** is a symmetric digraph where each pair of antiparallel arcs has the same weight.

- Computer representations: special conventions if there is no arc between u and v.
- An entry of null or 0 in a weighted adjacency matrix if the arc does not exist.
 - This entry is equal to ∞ for primitive data types.

Computer Representations of Weighted Digraphs

Cost	ma	tric	es:
0	1	- e) 9

	0	1	- 4	0	
0	0	1	4	0	
1	0	0	0	2	
2	0	2	0	5	
3	$\begin{bmatrix} 0\\0\\0\\2 \end{bmatrix}$	0	0	0	

	0	1	2	3	4	5
0	0	4	1	0	4	0]
1	4	0	0	2	3	4
2	1	0	0	0	3	0
3	0	2	0	0	0	1
4	4	3	3	0	0	2
5	0	4	0	1	2	$\begin{bmatrix} 5 \\ 0 \\ 4 \\ 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$

Computer Representations of Weighted Digraphs

Weighted Adjacency Lists:

0 :	1	1	2	4]
1:	3	2			
2:	1	2	3	5	
3 :	0	2			

0:	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} $	4	2	1	4	4		
1:	0	4	3	2	4	3	5	4
2:	0	1	4	3				
3 :	1	2	5	1				
4:	0	4	1	3	2	3	5	2
5:	1	4	3	1	4	2		

Diameter of a Strongly Connected Digraph

Definition 6.3

The **diameter** of a strongly connected digraph G is the maximum of distances d(u, v) over all nodes $u, v \in V(G)$.

- If a digraph is not strongly connected, the diameter is undefined.
- Two "reasonable" definitions: $+\infty$ or n since no path in G can have length more than n-1.
- Distance matrix -d(u,v)]; $u, v \in V(G)$; by running BFSvisit from each node in turn (running time $\Theta(n^2 + nm)$).

Distance Matrix: Eccentricity of a Node

Distances in weighted (di)graphs (G, c): more complex computations.