Directed Graphs (Digraphs) and Graphs
Definitions Graph ADT Traversal algorithms DFS

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

@ Basic definitions

@® Digraph Representation and Data Structures
© Digraph ADT Operations

O Graph Traversals and Applications

@ Depth-first Search in Digraphs

N

74

Outline

Graphs in Life: World Air Roures

g -

http://milenomics.com /2014 /05 /partners-alliances-partner-awards/

Outline

Graphs in Life: Global Internet Connections

http://www.opte.org/maps/

Outline

Graphs in Life: Social Networks (Facebook)

s

Definitions

Directed Graph, or Digraph: Definition

together with a (possibly empty) set E of ordered pairs of nodes®

A digraph G = (V| E) is a finite nonempty set V' of nodes
of G called arcs. J

Vv = {0,1,2,3,4,56 }

E {(0,1), (0,3),

I
]
—

) Set E is a neighbourhood, or adjacency relation on V.

6/74

Definitions

Digraph: Relations of Nodes

If (u,v) € E, out-neighbour of u
e v is adjacent to u;
e v is an out-neighbour of u, and

e u is an in-neighbour of v. in-neighbour of v

Examples:

o

Nodes (points) 1 and 3 are adjacent to 0.

[e]

1 and 3 are out-neighbours of 0.

o 0 is an in-neighbour of 1 and 3.

e}

Node 1 is adjacent to 3.
o 1 is an out-neighbour of 3.

o 3is an in-neighbour of 1. ...

o 5 is an out-neighbour of 2, 4, and 6.

Definitions

(Undirected) Graph: Definition

A graph® G = (V, E) is a finite nonempty set V' of vertices
together with a (possibly empty) set E of unordered pairs of
vertices of G called edges.

V = {a7b7c7d’e7f7g?h}

E = {{ab}, {a.d, (b}, {beh
{e,d}, {d, f}, {d,h} {f, b},
{e.q} }

°) The symmetric digraph: each arc (u,v) has the opposite arc (v, u).

Such a pair is reduced into a single undirected edge that can be traversed
in either direction.

Definitions

Order, Size, and In- / Out-degree

The order of a digraph G = (V| E) is the number of nodes, n = |V|.J

Definitions

Order, Size, and In- / Out-degree

The order of a digraph G = (V| E) is the number of nodes, n = |V|.J

The size of a digraph G = (V, E) is the number of arcs, m = |E]. J

. Sparse digraphs: |E| € O(n) Dense digraphs: |E| € ©(n?)
For a given n, >e
m =0 n(n — 1)

74

Definitions

Order, Size, and In- / Out-degree

The order of a digraph G = (V| E) is the number of nodes, n = |V|.J

The size of a digraph G = (V, E) is the number of arcs, m = |E]. J

. Sparse digraphs: |E| € O(n) Dense digraphs: |E| € ©(n?)
For a given n, >e
m =0 n(n — 1)

The in-degree or out-degree of a node v is the number of arcs
entering or leaving v, respectively.

® A node of in-degree 0 — a source.
® A node of out-degree 0 — a sink.

® This example: the order |[V| =6
and the size |E| = 9.

Definitions

Walk, Path, and Cycle

A walk in a digraph G = (V, E):

a sequence of nodes vy v; ... vy, such that (v;,v;11) is an arc in
G, ie., (vj,v;41) € E, foreach i; 0 < i < n.

10/74

Definitions

Walk, Path, and Cycle

A walk in a digraph G = (V, E):

a sequence of nodes vy v; ... vy, such that (v;,v;11) is an arc in
G, ie., (vj,v;41) € E, foreach i; 0 < i < n.

e The length of the walk vgvy ... v, is the number n of arcs
involved.

e A path is a walk, in which no node is repeated.

e A cycle is a walk, in which vy = v,, and no other nodes are
repeated.

10/74

Definitions

Walk, Path, and Cycle

A walk in a digraph G = (V, E):

a sequence of nodes vy v; ... vy, such that (v;,v;11) is an arc in
G, ie., (vj,v;41) € E, foreach i; 0 < i < n.

e The length of the walk vgvy ... v, is the number n of arcs
involved.

e A path is a walk, in which no node is repeated.

e A cycle is a walk, in which vy = v,, and no other nodes are
repeated.

® By convention, a cycle in a graph is of length at least 3.

® |t is easily shown that if there is a walk from u to v, then there is at least
one path from u to v.

10/74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?
023
312
126531
4565
435

11 /74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?
023 no no no
312
126531
4565
435

11 /74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?

023 no no no
312 yes yes no
126531

4565

435

11 /74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?

023 no no no

312 yes yes no

126531 | vyes no yes
4565

435

11 /74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?
023 no no no
312 yes yes no
126531 | vyes no yes
4565 yes no no
435

11 /74

Definitions

Walks, Paths, and Cycles in a Digraph: an Example

Sequence | Walk? Path? Cycle?
023 no no no
312 yes yes no
126531 | vyes no yes
4565 yes no no
435 no no no

11 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?
abc
ege
dbed
dad f
abdfh

12 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?
abc yes yes no
ege
dbcd
dad f
abdfh

12 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?
abc yes yes no
ege yes no no
dbcd

dad f

abdfh

12 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?
abc yes yes no
ege yes no no
dbcd yes no yes
dad f

abdfh

12 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?

abc yes yes no
ege yes no no
dbcd yes no yes

dadf yes no no
abdfh

12 /74

Definitions

Walks, Paths, and Cycles in a Graph: an Example

Sequence | Walk? Path? Cycle?

abc yes yes no
ege yes no no
dbcd yes no yes

dadf yes no no
abdfh yes yes no

12 /74

Definitions

Digraph G = (V, E): Distances and Diameter

The distance, d(u,v), from a node u to a node v in G is the
minimum length of a path from u to v. J

e If no path exists, the distance is undefined or 4oc.

e For graphs, d(u,v) = d(v,u) for all vertices u and v.

13 /74

Definitions

Digraph G = (V, E): Distances and Diameter

The distance, d(u,v), from a node u to a node v in G is the
minimum length of a path from u to v. J

e If no path exists, the distance is undefined or 4oc.

e For graphs, d(u,v) = d(v,u) for all vertices u and v.

The diameter of G is the maximum distance ma)‘c/[d(u,v)]
RIS

between any two vertices.

The radius of G is min max[d(u, v)].
ueV veV

13 /74

Definitions

Path Distances in Digraphs: Examples

d(0,3) = min{length,g 3;lengthy¢ (96 53;lengthyeoq 053}
= min{l;5;4} =1
v
0 1 2 3 4 5 6

u=0|— 1 2 1 oo 3 3
uw=1]2 — 1 3 oo 2 2
uw=2| 1 3 — 2 o~ 1 1
w=313 1 2 — oo 3 3
w=4|1 2 3 1 — 1 2
w=514 2 3 1 oo — 1
u=6 | 5 3 4 2 oo 1 —

d(0,1) = 1, d(0,2) = 2, d(0,5) = 3, d(0,4) = 0o, d(5,5) = 0, d(5,2) = 3

d(5,0) =4, d(4,6) =2, d(4,1) =2, d(4,2) =

Diameter: max{1,2,1,00,3,...,4,...,5,...,1} = c©

Raduis: min{oo, o0, ...,3,00,00} =3

14 /74

Definitions

Path Distances in Graphs: Examples

a b c d e f g h
u=a 0 1 2 1 o 2 o© 2
u=b 1 0 1 1 o0 2 o© 2
u=c 2 1 0 1 o0 2 ™ 2
u=d| 1 1 1 0 o0 1 oo 1
u=e [00 00 00 00 0 oo 1 o0
u=f | 2 2 2 1 oo 0 oo 1
u=g |00 00 o0 oo 1 oo 0 oo
u=h 2 2 2 1 oo 1 o 0

d(a,b) = d(b,a) =1, d(a,c) = d(c,a) =2, d(a,f) = d(f,a) = 2,
d(a,e) = d(e,a) = 0o, d(e,e) =0, d(e,g) = d(g,e) =1, d(h,f) =d(f,h) =1,
d(d,h) = d(h,d) = 1

Diameter: max{0,1,2,1,00,2,...,2,...,2,...,0} =0

Radius: min{oo,...,00} = 0o

15 /74

Definitions

Diameter / Radius of an Unweighted Graph

A B C D FE maxyd(u,w)

A10 11 2 12

Bl 0 2 1 1]2

c|l 2 0 1 1]2

pl2 1 1 0 1]2

|1l 1 1 1 0]1
d(C,E) = d(E,C)

= min{l,1+1,14+1,1+1+1,1+1+1}=1

d(B,C) = d(C,B)

= min{l+1,1+14+1L,14+1L,14+1+1,1+1,14+1+1}=2
Radius = 1; diameter = 2.

16 /74

Definitions

Diameter / Radius of a Weighted Graph

A B C D FE maxyd(u,w)
A10 2 2 2 12
B2 0 4 2 1|4
cl2 4 0 3 3|4
p|2 2 3 0 1|3
|1 1 3 1 0]s3

d(C,E) = d(F,QC)
min{5,24+1,3+1,2+3+1,34+2+1} =3
d(C, B)
= min{3+2,1+1+2,14+514+1+3,2+3,2+1+5}=4
Radius = 2; diameter = 4.

d(B,C)

17 /74

Definitions

Underlying Graph of a Digraph

The underlying graph of a digraph G = (V, E) is the graph
G' = (V,E') where E' = {{u,v} | (u,v) € E}. J

18 /74

Sub(di)graphs

A subdigraph of a digraph G = (V, E) is a digraph G' = (V', E’)
where V! C V and B/ C E. J

V =1{0,1,2,3,4}, o (v’ ={1,2,3},)
G- (0,2), (1,0), (1,2), \E ={12), 3.1}
E={(1,3),(3,1),(4,2),
(3,4)

19 /74

Spanning Sub(di)graphs

A spanning subdigraph contains all nodes, thatis, V' = V. J

V = {07 17 27 37 4}7

V' ={0,1,2,3,4}

G= 0,2),(1,0),(1,2),) | &=, _ [(0,2), (1,2),

E = {(1,3),(3,1),(4,2),} T 1(3,4) }
(3.4)

20/74

Definitions

Induced Sub(di)graphs

= (V',E’) where E' = {(u,v) € E|ue€ V' and v € V'}.

SOk

V =1{0,1,2,3,4},

(= {1,2,3}
G= (0,2),(1,0,(1,2,) | ¢ =1 . _ [(1,2), (1,3),)
E:{E;Z; (3,1), (4,)} B *{(3,1) }

The subdigraph induced by a subset V' of V is the digraph J

21/74

Representation

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled 0,1,...,n — 1:

The adjacency matrix of G:

The n x n boolean matrix (often encoded with 0's and 1's) such that

its entry (4, 7) is true if and only if there is an arc (7, j) from the
node i to node j.

Representation

Digraphs: Computer Representation

For a digraph G of order n with the vertices, V, labelled 0,1,...,n — 1:

The adjacency matrix of G:

The n x n boolean matrix (often encoded with 0's and 1's) such that
its entry (4, 7) is true if and only if there is an arc (7, j) from the
node i to node j.

An adjacency list of G:

A sequence of n sequences, Ly, ..., L,_1, such that the sequence
L; contains all nodes of G that are adjacent to the node .

Each sequence L; may not be sorted! But we usually sort them.

Representation

Adjacency Matrix of a Digraph

o 1 2 3 4 5 6
o010 1 0 0 0]
/0010000
210 000 1 1
510 1.0 00 00
41001010
510001001
500000 1 0

Adjacency matrix of G:

Digraph G = (V, E) (i,§) ¢ E

1 — an adjacent pair of vertices:
(i,j) € E

The number of 1's in a row (column) is the out-(in-) degree of the related node.

0 — a non-adjacent pair of vertices:

23 /74

Representation

Adjacency Lists of a Graph

symbolic
0= a: bd
1= b:acd
2= c:bd
3= d:abcfh
=eg
5= f:dh
Graph G = (V, E) = g e
7= h:df

numeric

8
13
023
13
01257
6
37
4
35

Special cases can be stored more efficiently:

® A complete binary tree or a heap: in an array.

® A general rooted tree: in an array pred of size n;
® pred[i] — a pointer to the parent of node i.

24 /74

Digraph Operations w.r.t. Data Structures

Operation Adjacency Matrix Adjacency Lists
arc (i,7) exists? | is entry (4,5) 0 or 1 find j in list ¢
out-degree of i | scan row and sum 1's size of list ¢

in-degree of ¢

scan column and sum 1's

for j # 4, find ¢ in list j

add arc (4, 7)

change entry (i, 7)

insert 7 in list ¢

delete arc (i, j)

change entry (i, 7)

delete j from list 4

add node

create new row/column

add new list at end

delete node

delete row/column 4 and
shuffle other entries

delete list ¢ and for j # i,
delete ¢ from list j

25 /74

Adjacency Lists / Matrices: Comparative Performance

G=WV,E) — n=[V[m=|E|

Operation array/array | list/list
arc (i, j) exists? O(1) FIOR
out-degree of i ©(n) o(1)
in-degree of i ©(n) ©(n+m)
add arc (i, 5) O(1) O(1)
delete arc (i, 7) O(1) O(a)
add node O(n) o(1)
delete node i O(n?) ©(n+m)

°JHere, a denotes size of the adjacency list for vertex i.

26 /74

General Graph Traversal Algorithm

algorithm traverse
Input: digraph G = (V, E)
begin
array colour[n], pred[n]
for u € V(G) do
colour|u] < WHITE
end for
for s € V(G) do
if colour[s] = WHITE then
visit(s)
end if
end for
return pred
end

Traversal

Three types of nodes each stage:
® WHITE — unvisited yet.

o GREY - visited, but some
adjacent nodes are WHITE.

(Part 1)

e BLACK - visited; only GREY

adjacent nodes

27 /74

Traversal

General Graph Traversal Algorithm (Part 2)

algorithm visit
Input: node s of digraph G
begin
colour(s] <= GREY; pred]s] < NULL
while there is a grey node do
choose a grey node u
if there is a white neighbour of u
choose such a neighbour v
colour|v] < GREY; pred[v] < u
else colour|u] «+— BLACK
end if
end while
end

28 /74

Traversal

lllustrating the General Traversal Algorithm

initialising all nodes WHITE

29 /74

Traversal

lllustrating the General Traversal Algorithm

visit(a); colour(a] + GREY
e is WHITE neighbour of a:
colourle] < GREY; predle] < a

30/74

Traversal

lllustrating the General Traversal Algorithm

visit(a); colour(a] + GREY
e is WHITE neighbour of a
colourle] < GREY; predle] + a
choose GREY a: no WHITE neighbour:
colour[a] + BLACK

31/74

Traversal

lllustrating the General Traversal Algorithm

visit(a); colour(a] + GREY

e is WHITE neighbour of a
colourle] < GREY; predle] + a

choose GREY a: no WHITE neighbour:
colour[a] + BLACK

choose GREY e: no WHITE neighbour:
colour[e] + BLACK

32/74

Traversal

lllustrating the General Traversal Algorithm

visit(b); colour[b] + GREY
c is WHITE neighbour of b
colour[c] + GREY; pred|c] + b

33/74

Traversal

lllustrating the General Traversal Algorithm

visit(b); colour[b] + GREY

c is WHITE neighbour of b
colour[c] + GREY; pred|c] + b

d is WHITE neighbour of ¢
colour[d] < GREY; pred[d] + ¢

34 /74

Traversal

lllustrating the General Traversal Algorithm

visit(b); colour[b] + GREY
c is WHITE neighbour of b
colour[c] + GREY; pred|c] + b
d is WHITE neighbour of ¢
colour[d] < GREY; pred[d] + ¢
no more WHITE nodes:
colour[d] < BLACK
colour[c] + BLACK
colour[b] <— BLACK

35/74

Traversal

Classes of Traversal Arcs

Search forest F": a set of disjoint trees
spanning a digraph G after its traversal.

An arc (u,v) € E(Q) is called a tree
arc if it belongs to one of the trees of I

The arc (u,v), which is not a tree arc,
is called:

e a forward arc if v is an ancestor of
vin F

e a back arc if u is a descendant of
vin F, and

e a cross arc if neither v nor v is an
ancestor of the other in F.

36 /74

Traversal

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F.

37/74

Traversal

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F.

@ If 71 and 15 are different trees in F' and 17 was explored
before 15, then there are no arcs from 7 to T5.

37/74

Traversal

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F.

@ If 71 and 15 are different trees in F' and 17 was explored
before 15, then there are no arcs from 7 to T5.

® If GG is a graph, then there can be no edges joining different
trees of F'.

37/74

Traversal

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F.

@ If 71 and 15 are different trees in F' and 17 was explored
before 15, then there are no arcs from 7 to T5.

® If GG is a graph, then there can be no edges joining different
trees of F'.

© If v,w € V(G); v is visited before w, and w is reachable from
v in G, then v and w belong to the same tree of F.

37/74

Traversal

Basic Facts about Traversal Trees (for further analyses)

Theorem 5.2: Suppose we have run traverse on G, resulting in a
search forest F.

@ If 71 and 15 are different trees in F' and 17 was explored
before 15, then there are no arcs from 7 to T5.

® If GG is a graph, then there can be no edges joining different
trees of F'.

© If v,w € V(G); v is visited before w, and w is reachable from
v in G, then v and w belong to the same tree of F.

O If v,w € V(G) and v and w belong to the same tree T in F,
then any path from v to w in G must have all nodes in T'.

37/74

Traversal

Run-time Analysis of Algorithm traverse

In the while-loop of subroutine visit let:
e ¢ (A) be lower (upper) time bound to choose a GREY node.
® b (B) be lower (upper) time bound to choose a WHITE neighbour.

Given a (di)graph G = (V, E) of order n = |V| and size m = |E|,

the running time of traverse is:

e O(An + Bm) and Q(an + bm) with adjacency lists, and
e O(An + Bn?) and Q(an + bn?) with an adjacency matrix.

Time to find a GREY node: O(An) and Q(an)
Time to find a WHITE neighbour: O(Bm) and (bm) (adjacency lists)
O(Bn?) and Q(bn?) (an adjacency matrix)

e Generally, A, B,a,b may depend on n.

® A more detailed analysis depends on the rules used.

38/74

Traversal

Main Rules for Choosing Next Nodes

e Depth-first search (DFS):

e Starting at a node v.

e Searching as far away from v as
possible via neighbours.

e Continue from the next neighbour
until no more new nodes.

e Breadth-first search (BFS):

e Starting at a node v.

e Searching through all its neighbours,
then through all their neighbours,
etc.

e Continue until no more new nodes.

e More complicated priority-first search
(PFS).

39/74

Depth-first Search (DFS) Algorithm

algorithm dfs
Input: digraph G = (V(G), E(G))
begin
stack S; array colour|[n|, pred[n], seen|n], done[n]
for u € V(G) do
colour|u] - WHITE; pred[u] <~ NULL
end for
time < 0
for s € V(G) do
if colour[s] = WHITE then
dfsvisit(s)
end if
end for
return pred, seen, done
end

40 /74

Depth-first Search (DFS) Algorithm

algorithm dfsvisit
Input: node s
begin
colour[s] «+— GREY; seen|[s| « time + +;
S.push_top(s)
while not S.isempty() do
u < S.get_top()
if there is a v adjacent to v and colour[v] = WHITE then
colour|v] < GREY; pred[v] + u
seen[v] < time + +; S.push_top(v)
else S.del _top();
colour|u] - BLACK; done[u] < time + +;
end if
end while
end

41 /74

Recursive View of DFS Algorithm

algorithm rec_ dfs visit
Input: node s
begin
colour[s] + GREY
seenls| « time + +
for each v adjacent to s do
if colour[v] = WHITE then
pred[v] < s
rec_dfs_visit(v)
end if
end for
colour[s] < BLACK
donels| « time + +
end

42 /74

DFS: An Example (seen[v] | done[v]): time = 0; 1

43 /74

DFS: An Example (seen[v] | done[v]): time = 1;2

44 /74

DFS: An Example (seen[v] | done[v]): time = 2,3

45 /74

DFS: An Example (seen|v] | donelv]): time = 3;4

46 /74

DFS: An Example (seen[v] | done[v]): time = 4;5

47 /74

DFS: An Example (seen[v] | donelv]: time = 5,6

48 /74

DFS: An Example (seen[v] | done[v]): time = 6,7

49 /74

DFS: An Example (seen[v] | done[v]): time = 7,8

50 /74

DFS: An Example (seen[v] | done[v]): time = 8,9

51/74

DFS: An Example (seen[v] | donelv]): time = 9,10

52 /74

Basic Properties of Depth-first Search

Next GREY node chosen <+ the last one coloured GREY thus far.
e Data structure for this “last in, first out” order — a stack.

Each call to dfs_visit(v) terminates only when all nodes
reachable from v via a path of WHITE nodes have been seen.

If (v,w) is an arc, then for a

e tree or forward arc: seen[v] < seen[w] < done[w] < done[v]
e Example in Slide 52: (a,0): 0<1<8<9; (b,e): 1 <2<5<8;
(a,c): 0<2<5<9;

e back arc: seen[w] < seen[v] < done[v] < done|w]:
e Example in Slide 52: (d,a): 0 <6 <7 <9;

e cross arc: seen[w| < done[w] < seen[v] < done[v].
e Example in Slide 52: (d,e): 3<4<6< T,

Hence, there are no cross edges on a graph.

53 /74

Tree, Forward, Back, and Cross Arcs (Example in Slide 52)

— Tree arc
— > Forward arc
—— > Back arc

— > Cross arc

54 /74

Using DFS to Determine Ancestors of a Tree

Theorem 5.5

Suppose that DFS on a digraph G results in a search forest F. Let
v,w € V(G) and seen[v] < seen[w].

@ If v is an ancestor of w in F, then
seenfv] < seen[w] < done[w] < done[v].
® If v is not an ancestor of w in F', then

seen|v] < done[v] < seen[w] < done[w].

@ This part follows from the recursive nature of DFS.

@ If v is not an ancestor of w in F', then w is also not an ancestor v.
e Thus v is in a subtree, which was completely explored before the
subtree of w. 0

55 /74

DFS: seen/done: step 1

Preorder (WHITE to GREY): seen A
1
Postorder (GREY to BLACK) done

56 /74

DFS: seen/done: step 2

Preorder (WHITE to GREY): seen A B
12
Postorder (GREY to BLACK) done

57 /74

DFS: seen/done:

Preorder (WHITE to GREY): seen A B
12
Postorder (GREY to BLACK) done B
3

58 /74

DFS: seen/done: step 4

Preorder (WHITE to GREY): seen A B S
124
Postorder (GREY to BLACK) done B
3

59 /74

DFS: seen/done: step b

Preorder (WHITE to GREY): seen AB S C
1245
Postorder (GREY to BLACK) done B
3

60 /74

DFS: seen/done:

Preorder (WHITE to GREY): seen ABS CD
12456
Postorder (GREY to BLACK) done B
3

61 /74

DFS: seen/done:

Preorder (WHITE to GREY): seen A B'S CD
12456
Postorder (GREY to BLACK) done B D
37

62 /74

DFS: seen/done:

Preorder (WHITE to GREY): seen ABSCDE
1245638
Postorder (GREY to BLACK) done B D
37

63 /74

DFS: seen/done:

Preorder (WHITE to GREY): seen ABSCDEH
1245689
Postorder (GREY to BLACK) done B D
37

64 /74

DFS: seen/done: step 10

Preorder (WHITE to GREY): seen ABSCDEH G
124568910
Postorder (GREY to BLACK) done B D
37

65 /74

DFS: seen/done: step 11

Preorder (WHITE to GREY): seen ABSCDEH G F
12456891011
Postorder (GREY to BLACK) done B D
37

66 /74

DFS: seen/done: step 12

Postorder (GREY to BLACK) done B

~O v

67 /74

DFS: seen/done: step 13

Preorder (WHITE to GREY): seen A B
12
Postorder (GREY to BLACK) done B D
371213

68 /74

DFS: seen/done: step 14

69 /74

DFS: seen/done: step 15

8/15

70/74

DFS: seen/done: step 16

8/15

71/74

DFS: seen/done: step 17

8/15

9/14
S CDEHGTF
4 5 6 8 91011
FGHETCS

72/74

DFS: seen/done: step 18

8/15

73/74

Determining Ancestors of a Tree: Examples

8/15
11/12
9/14
A— B: seen[A] = 1<seen[=2 < done[B] = 3 < done[A] =18

[
S— H: seen| =9 < done[H] = 14 < done[S] = 17
B —» D: seen|

[

]
H] =
B] 2 < done[B] = 3 < seen[D] = 6 < done[D] =7
D » G: seen[D] =6 < done[D] =7 < seen[G] = 10 < done|G] = 13

74 /74

	Basic definitions
	Digraph Representation and Data Structures
	Digraph ADT Operations
	Graph Traversals and Applications
	Depth-first Search in Digraphs

