
Outline Basics Collision resolution Universal hashing Efficiency

Hashing to Store Symbol Tables
Basics Collision resolution Universal hashing

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 41

Outline Basics Collision resolution Universal hashing Efficiency

1 Hash tables: basics

2 Hash tables: collision resolution

3 Universal hashing

4 Search efficiency of hash tables

2 / 41

Outline Basics Collision resolution Universal hashing Efficiency

World Airports

Textbook, Table 3.1 of airports ordered by symbolic codes:

Key, k Associated value, v

Code City Country Place

AKL Auckland New Zealand
DCA Washington USA District Columbia
FRA Frankfurt a.M. Germany Rheinland-Pfalz
GLA Glasgow UK Scotland
HKG Hong Kong China
LAX Los Angeles USA California
ORY Paris-Orly France
SDF Louisville USA Kentucky

Array implementation: works well, provided the number of possible
search keys is sufficiently small (here, 263 = 17, 576 codes).

3 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Table of Airports: Array Implementation

Search by direct addressing, e.g., k◦ = SDF

k
v

AAA AAB AAC . . .
↓

SDE SDF SDG . . . ZZX ZZY ZZZ

4 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Symbol Table and Hashing

Usually, only a tiny fraction of all possible keys are actually in use:

UoA student ID: 7-digit / 9-digit decimal number

10,000,000 possible keys ⇔ ≈ 40, 000 students (0.4%) annually.
1,000,000,000 possible keys ⇔ ≈ 40, 000 students (0.004%).

• (Symbol) table is a set of table entries, (k, v), such that each
entry contains a unique key, k, and a value (information), v.

• Each key uniquely identifies its entry.

• Table searching:
• Given: a search key, k
• Find: the table entry, (k, v)

Hashing to store and search for values in a symbol table uses less
space than direct array addressing, but retains many of its benefits.

5 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Symbol Table and Hashing

Hashing stores values and searches for them in:

• Linear, O(n), worst-case time and

• Extremely fast, O(1), average-case time.

Once the entry (k, v) of a symbol table is found:

• its value v, may be updated, or

• it may be retrieved, or

• the entire entry, (k, v), may be removed from the table.

If no entry with key k exists in the table:

• A new entry with k as its key may be inserted to the table.

6 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Basic Features of Hashing

Hashing computes an integer hash code, for each object.

• The computation implements a hash function, h(k).

• It maps objects (e.g., keys k) to indices of a given linear array,
called the hash table.

• The function must always return a valid array index.

An object with a key k has to be stored at the location h(k).

• Hash codes must be computed quickly.

• Hashing a key to an index depends only on the key to hash.

• It is independent of all other keys in the table.

7 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Hash Table

Search for an object with a key k◦ at the location j = h(k◦)

h(k)

v
0 1 2 . . .

↓
j − 1 j j + 1 . . . J − 2 J − 1 J

8 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Basic Features of Hashing

Perfect hash function:

• a different index value for every key. But such a function
cannot be always found.

Collision:

• if two distinct keys, k1 6= k2, hash to the same hash address,
h(k1) = h(k2)

Collision resolution policy:

• how to find additional storage to store one of the collided
table entries

Load factor λ:

• fraction of the already occupied entries (n occupied entries in
the table of size m: λ = n

m)

9 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Example 3.24 (Textbook): Mapping Keys to Array Indices

• 100 two-digit integer keys k: 00,01,. . . ,99

• 10 array indices: 0,1,. . . ,9

• A simple rounding hash function: h(k) =
⌊
k
10

⌋
returning the

closest integer, which is less than or equal to k
10 , e.g.,

h(3) =

⌊
3

10

⌋
= b0.3c = 0; h(77) =

⌊
77

10

⌋
= b7.7c = 7; . . .

h(k)

v

0
v0

1
v1

2
v2

3
v3

4
v4

5
v5

6
v6

7
v7

8
v8

9
v9

10 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Example 3.24 (Textbook): Mapping Keys to Array Indices

Collision: e.g., the keys 22 and 25 hash to the same index,
h(22) = h(25) = 2:

h(22) =

⌊
22

10

⌋
= b2.2c = 2; h(25) =

⌊
25

10

⌋
= b2.5c = 2; . . .

Collision resolution policy is to be defined to store both the table
entries, (k1, v1) and (k2, v2).

h(k)

v

k=
22

↓
k=25↓

0
v0

1
v1

2
v2

3
v3

4
v4

5
v5

6
v6

7
v7

8
v8

9
v9

• Different keys hashed to the same hash address are called
synonyms.

• Data items with synonymic keys are often called synonyms, too.

11 / 41

Outline Basics Collision resolution Universal hashing Efficiency

How Common Are Collisions?

Richard von Mises [1883–1953]: von Mises Birthday Paradox:

if there are more than 23 people in a room, the chance is greater
than 50% (!) that two or more of them have the same birthday a.

aIt is not really a paradox in the math sense, but a counter-intuitive fact!

If the table is only 6.3% full (since 23
365

= 0.063), the
chance of a collision is better than 50%!

• 50.0% chance of collision if λ = 0.063 (23
out of 365).

• 89.1% chance of collision if λ = 0.110 (40
out of 365).

• 99.4% chance of collision if λ = 0.164 (60
out of 365).

12 / 41

Outline Basics Collision resolution Universal hashing Efficiency

How Common Are Collisions? m = 365

λ = 0
365 = 0

Chance of collision: 0%

23
365 = 0.063

50.7%

40
365 = 0.110

89.1%

13 / 41

Outline Basics Collision resolution Universal hashing Efficiency

How Common Are Collisions?

Probability Q(m,n) of no collision between n items, being
randomly tossed into a table with m slots:

Q(m, 1) = 1 ≡ m

m
m free slots

Q(m, 2) = Q(m, 1)
m− 1

m
≡ m(m− 1)

m2
m− 1 free slots

Q(m, 3) = Q(m, 2)
m− 2

m
≡ m(m− 1)(m− 2)

m3
m− 2 free slots

.

Q(m,n) = Q(m,n− 1)
m− n+ 1

m
m− n+ 1 free slots

≡ m(m− 1) · · · (m− n+ 1)

mn

Q(m,n) =
m!

mn(m− n)!
; 1 ≤ n ≤ m

14 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Probability of One or More Collisions

Probability, Pm(n), of at least one collision between n items, being
randomly tossed into the table with m slots:

Pm(n) = 1−Q(m,n) = 1− m!

mn(m− n)!

n % P365(n)

10 2.7 0.1169

20 5.5 0.4114

30 8.2 0.7063

40 11.0 0.8912

50 13.7 0.9704

60 16.4 0.9941

P365(n)

n

15 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Open Addressing with Linear Probing (OALP)

The simplest collision resolution policy:

• Successive search for the first empty entry at a lower location

• If no such entry, then wrap around the table

Lemma 3.31:

Assuming uniformly hashed random input, the expected number of
probes for successful, Tss(λ), and unsuccessful, Tus(λ), search in a
hash table using OALP depends on load factor λ = n

m as

Tss(λ) =
1

2

(
1 +

1

1− λ

)
and Tus(λ) =

1

2

(
1 +

(
1

1− λ

)2
)
,

respectively.

The proof is beyond the scope of this course.
16 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

17 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP Example: n = 5..7; m = 10

Data: Hash: Address: Probes # of λ
[k, v] h(k) =

⌊
k
10

⌋
ak probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 0 3, 2, 1, 0 4 0.6
[24, G] 2 9 2, 1, 0, 9 4 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

•••
F

•••

G

18 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OALP: Pros and Cons

Pro: Simple to implement.

Con: Degeneration of hash tables due to clustering.

F B A E C D G

• Cluster – a sequence of adjacent occupied table entries.
• Tendency to form clusters around locations with one or more

collisions.
• The larger the cluster, the faster its growth.
• Longer search for an empty address due to clustering:

• Average number ν of probes for Example in Slides 17–18:
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ν 1 1 1 1 1 1.5 1.86

Another probing scheme, double hashing, reduces the likeihood of
clustering.

19 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Open Addressing with Double Hashing (OADH)

Better collision resolution policy reducing the clustering:

• hash the collided key again with a different hash function

• use the result of the second hashing as an increment for
probing table locations (including wraparound)

Lemma 3.30:

Assuming that OADH provides nearly uniform hashing, the
expected number of probes for successful, Tss(λ), and
unsuccessful, Tus(λ), search in a hash table with load factor λ = n

m
is, respectively:

Tss(λ) =
1

λ
ln

(
1

1− λ

)
and Tus(λ) =

1

1− λ

20 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

21 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH Example: n = 5..7; m = 10

Hash: h(k) =
⌊

k
10

⌋
; second hash: ∆(k) = (h(k) + k) mod 10

Data: Address: Probes # of λ
[k, v] h(k) ∆(k) probes

[20, A] 2 2 2 1 0.1
[15, B] 1 1 1 1 0.2
[45, C] 4 4 4 1 0.3
[87, D] 8 8 8 1 0.4
[39, E] 3 3 3 1 0.5
[31, F] 3 9 ∆(31) = 4 3, 9 2 0.6
[24, G] 2 6 ∆(24) = 6 2, 6 2 0.7

0 1 2 3 4 5 6 7 8 9

AB C DE

• ←←←←
F

•←← ←←←←

G

22 / 41

Outline Basics Collision resolution Universal hashing Efficiency

OADH vs. OALP: More Uniform Hashing

More clusters than OALP, but of smaller sizes:

F B A E C D G

OALP

B A E C G D F

OADH

• OALP: One custer “CEABFGD” of size 7.

• OADH: 3 clusters “CEAB”, “G”, and “FD” of sizes 4, 1, and 2,
respectively.

• Unlike OALP, OADH does not extend clusters only at one end.

• Unlike OALP, OADH does not tend to join nearby clusters.

• Average number ν of probes in the above examples:

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7
OALP : ν 1 1 1 1 1 1.5 1.86

OADH : ν 1 1 1 1 1 1.17 1.29

23 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Two More Collision Resolution Techniques

Main problem of open addressing: if significant number of items
need to be deleted – all logically deleted items must remain in the
table until the table can be re-organised.

Two techniques to attenuate this drawback:

• Separate chaining – a hash table with m addresses of linked lists
0 1 2 . . . m − 2 m − 1

• Hash bucket – a large table of m buckets with hash addresses:
0 Bucket 0

1 Bucket 1

2 Bucket 2

. . . Bucket m − 1

24 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Separate Chaining

Hash table with m addresses h(k) ∈ {0, 1, . . . ,m− 1}

0 1 2 . . . m− 2 m− 1

L
ist

0

L
ist

1

L
ist

2

L
ist

m
−

2

L
ist

m
−

1

All keys k1, k2, . . . , with have collided at a single hash address,
a = h(k1) = h(k2) = . . ., are placed into a linked list, or chain,
started at that address, a.

25 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Separate Chaining: Expected Running Time (Lemma 3.29)

Assuming the hash address, h(k), for a key k is computed by one
elementary operation, the expected running time for unsuccessful
search in a hash table with load factor λ using separate chaining is

Tus(λ) = 1 + λ

The expected running time for successful search is

Tus(λ) ∈ O

(
1 +

λ

2

)

Update, retrieval, insertion and deletion all take time

T (λ) ∈ O(1 + λ)

26 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Separate Chaining: Expected Running Time

Proof.

• The average running time to unsuccessfully search for the key
at that address is equal to the average length of the
associated chain, λ = n

m .

• Thus in total Tus(λ) = 1 + λ = 1 + n
m .

• The average value of Tss(λ) (in accord with Lemma 3.3)
equals one plus the average of the times for the unsuccessful
searches undertaken while building the table.

• In this case, it is one plus the average of 0 + 1 + 2 + . . .+ λ,
i.e., 1 + λ

2 .

• Since update, retrieval and deletion from a linked list take
constant time, Tss(λ) is in O

(
1 + λ

2

)
.

27 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Hash Bucket

0
Bucket 0

1
Bucket 1

2
Bucket 2

. . . Bucket m− 1

• A big hash table is divided into m small sub-tables, or buckets.

• The hush function, h(k), maps a key k onto one of the
buckets.

• Collided keys are stored in each bucket a sequentially in their
ascending order: k1 < k2 < . . . if a = h(k1) = h(k2) =

28 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Implementation of Hashing: Resizing

Resizing a hash table for open addressing to keep λ < 0.75:

• Doubling the table size when λ ≥ 0.75.

• Readdressing all the elements with a new hash function.

• Average insertion time: Θ(1) (as now λ� 1).

• Time for m insertions – of order m.

• Total time to grow a table from 1 to m = 2k elements:
1 + 2 + . . .+ 2k−1 = 2k − 1 = m− 1 .

Thus, the average insertion time with resizing is still Θ(1).

29 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Implementation of Hashing: Deletion

Deletion of a table entry: simple for separate chaining (SC), but
difficult for open addressing (OA) tables.

Because an emptied place in an OA table invalidates the search for
subsequent keys, make the table valid as follows:

• Mark the deleted entries empty for insertion, but non-empty
for key search.

• If too many such marked entries, really delete them and resize
the table.

The deletion time O(1) for both SC and OA hash tables.

30 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Choosing a Hash Function, h(k)

Ideal hash function: uniform and random mapping onto all table
addresses.

• Similar to generating uniformly distributed pseudorandom
numbers.

Perfect hash function for a fixed set of keys:

• One-to-one mapping of the set of keys onto a set of table
indices.

• Main design problem: quick computation with no large tables.

• Limited practical interest as data sets are not static and sets
of keys cannot be predefined.

Four basic methods for non-fixed sets of keys:

• Division, folding, middle-squaring, and truncation

31 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Choosing a Hash Function: Division

• Choose a prime number as the table size m.
• Non-prime m: some slots may be unreachable for probing with

double hashing.

• Convert keys, k, into integers.

• Use the remainder h(k) = k modm as a hash value of k.

• Get the double hashing decrement using the quotient
⌊
k
m

⌋
:

∆(k) = max
{

1,
⌊
k
m

⌋
modm

}
Example of division: k = 013402122; m = 10007

h(k) = 013402122 mod 10007 = 2749

∆(k) = max
{

1,
⌊
013402122

10007

⌋
mod 10007

}
= 1339

32 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Choosing a Hash Function: Folding

• Divide the integer key, k, into sections.

• Add, subtract, and / or multiply them together for combining
into the final value, h(k)

Examples of folding: k = 013402122

k → 013, 402, 122 → h(k) = 013 + 402 + 122 = 537

k → 0134, 0212, 2 → h(k) = −0134 + 0212× 2 = 290

k → 01, 34, 02, 12, 2 → h(k) = 01× 34 + 02× 12× 2 = 082

33 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Choosing a Hash Function: Middle-squaring

• Choose a middle section of the integer key, k.

• Square the chosen section.

• Use a middle section of the result as h(k)

Examples of middle-squaring: k = 013402122

k → mid: 402 → 4022 = 161404 → mid: h(k) = 6140

k → mid: 34021 → 340212 = 1157428441 → mid: h(k) = 7428

34 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Choosing a Hash Function: Truncation

• Delete part of the key, k.

• Use the remaining digits (bits, characters) as the hash
address, h(k).

Examples of truncation:

k = 013402122 → last 3 digits: h(k) = 122

k = 013402122 → 2nd, 4th, and last digit: h(k) = 142

Notice that truncation does not spread keys uniformly into the
table; thus it is often used in conjunction with other methods.

35 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Universal Class of Hash Functions

Like with quicksort, randomisation can protect hashing against
bad worst-case behaviour of any fixed hash function.

Definition 3.33: Universal class of hash functions

Notation:

• K – a set of keys.

• m – a size of a hash table with indices M = {0, 1, . . . ,m− 1}.
• F – a set of the hash functions h, mapping K to M .

F is a universal class if any distinct pair of keys, k, κ ∈ K collide
for no more than 1

m of the functions in the class F :

1

|F |
|{h ∈ F |h(k) = h(κ)}| ≤ 1

m

Any pair of keys collide with a probability of at most 1
m

under the random
selection of a function from the class.

36 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Popular Universal Class of Hash Functions

Conditions:

• A set K = {0, 1, . . . , p− 1 of integer keys, such that its
cardinality p = |K| is a prime number.

• An arbitrary hash table size m.

.

Theorem 3.34 (Universal Class of Hash Functions)

Let ha,b(k) = ((ak + b) mod p)modm for any pair of integers
a ∈ {1, . . . , p− 1} and b ∈ {0, . . . , p− 1}.

Then F = {ha,b | 1 ≤ a < p and 0 ≤ b < p} is a universal class.

It is proven (see Textbook) that for any distinct pair of keys, (k, κ), at most
1
m
-th fraction of the hash functions in the set F cause these keys to collide.

37 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Strategy for Choosing a Hash Function

Theorem 3.34 suggests how to choose a hash function at run time:

1 Find the current size of the set of keys to hash.

2 Select the next prime number, p, larger than the size of the
key set found.

3 Randomly choose integers a and b such that 0 < a < p and
0 ≤ b < p.

4 Use the function ha,b(k) = ((ak + b) mod p)modm.

Example: 990 keys; p = 991; m = 701;

h5,800(k) = ((5k + 800) mod 991)mod 701 ⇒ Key 10 700 55 330

Index 149 336 84 468
e.g.,
h5,800(330) = ((5× 330︸ ︷︷ ︸

1650

+800) mod 991)mod 701 = ((2450 mod 991︸ ︷︷ ︸
468

)mod 701 = 468

38 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Efficiency of Search in Hash Tables

Load factor λ:
if a table of size m has exactly n occupied entries, then λ = n

m .

Average numbers of probe addresses examined for a successful,
Tss(λ), and unsuccessful Tus(λ), search depend on λ::

OALP : 0 ≤ λ < 0.7 OADH : 0 ≤ λ < 0.7 SC : λ = 4∗

Tss(λ)
1

2

(
1 +

1

1− λ

)
1

λ
ln

1

1− λ
1 +

λ

2
≤ 2.15 ≤ 1.70 3

Tus(λ)
1

2

(
1 +

1

(1− λ)2

)
1

1− λ
1 + λ

≤ 6.05 ≤ 3.33 5

∗) SC – separate chaining: λ may be greater than 1.

39 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Average Search Time in Hash Tables

λ Successful search Tss(λ) Unsuccessful search Tus(λ)
OALP OADH SC OALP OADH SC

0.10 1.06 1.05 1.05 1.12 1.11 1.10
0.25 1.17 1.15 1.13 1.39 1.33 1.25
0.5 1.5 1.39 1.25 2.5 2.0 1.5
0.7 2.15 1.7 1.35 6.05 3.33 1.7

0.75 2.5 1.85 1.38 8.5 4.0 1.75

0.90 5.5 2.56 1.45 50.5 10.0 1.90
0.99 50.5 4.65 1.49 5000.0 100.0 1.99

40 / 41

Outline Basics Collision resolution Universal hashing Efficiency

Table Representations: Comparative Performance

Operation Representation of a table of size m
Sorted array AVL tree Hash table

Initialise O(m) O(1) O(m)

Is full? O(1) O(1) O(1)

Search∗ O(logm) O(logm) O(1)

Insert O(m) O(logm) O(1)

Delete O(m) O(logm) O(1)

Enumerate O(m) O(m) O(m logm)◦

∗) also: Retrieve, Update

◦) Entries of a hash table must be sorted first in ascending order (it
takes the linearithmic time).

41 / 41

	Hash tables: basics
	Hash tables: collision resolution
	Universal hashing
	Search efficiency of hash tables

