Binary Search Trees

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures
(1) Properties of Binary Search Trees
(2) Basic BST operations
(3) The worst-case time complexity of BST operations

4 The average-case time complexity of BST operations
(5) Self-balancing binary and multiway search trees
(6 Self-balancing BSTs: AVL trees
(7) Self-balancing BSTs: Red-black trees

8 Balanced B-trees for external search

Binary Search Tree: Left-Right Ordering of Keys
Left-to-right numerical ordering in a BST: for every node i,

- the values of all the keys $k_{\text {left } i i}$ in the left subtree are smaller than the key k_{i} in i and
- the values of all the keys $k_{\text {right:i }}$ in the right subtree are larger than the key k_{i} in i : $\left\{k_{\text {left: } i}\right\} \ni l<k_{i}<r \in\left\{k_{\text {right:i }}\right\}$
Compare to the bottom-up ordering in a heap where the key k_{i} of every parent node i is greater than or equal to the keys k_{l} and k_{r} in the left and right child node l and r, respectively: $k_{i} \geq k_{l}$ and $k_{i} \geq k_{r}$.

Binary Search Tree: Left-Right Ordering of Keys

BST

Non-BST:
Keys " 11 " and " 12 " cannot be in the left subtree of key " 10 ".

Basic BST Operations

BST is an explicit data structure implementing the table ADT.

- BST are more complex than heaps: any node may be removed, not only a root or leaves.
- The only practical constraint: no duplicate keys (attach them all to a single node).
Basic operations:
- find a given search key or detect that it is absent in the BST.
- insert a node with a given key to the BST if it is not found.
- findMin: find the minimum key.
- findMax: find the maximum key.
- remove a node with a given key and restore the BST if necessary.

BST Operations Find / Insert a Node

Found node

insert: creating a new node at the point where an unsuccessful search stops. -
find: a successful binary search.

BST Operations: FindMin / FindMax

Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) as long as a corresponding child exists.

- The root of the tree plays a role of the pivot in quicksort and quickselect.
- As in quicksort, the recursive traversal of the tree can sort the items:
(1) First visit the left subtree;
(2) Then visit the root, and
(3) Then visit the right subtree.
$O(\log n)$ average-case and $O(n)$ worst-case running time for find, insert, findMin, and findMax operations, as well as for selecting a single item (just as in quickselect).

BST Operation: Remove a Node

The most complex because the tree may be disconnected.

- Reattachment must retain the ordering condition.
- Reattachment should not needlessly increase the tree height.

Standard method of removing a node i with c children:

c	ACTION
0	Simply remove the leaf i.
1	Remove the node i after linking its child to its parent node.
2	Swap the node i with the node j having the smallest key k_{j} in the right subtree of the node i.
	After swapping, remove the node i (as now it has at most one right child).

In spite of its asymmetry, this method cannot be really improved.

BST Operation: Remove a Node

Minimum key in
the right subtree

Analysing BST: The Worst-case Time Complexity

Lemma 3.11: The search, retrieval, update, insert, and remove operations in a BST all take time in $\mathrm{O}(h)$ in the worst case, where h is the height of the tree.

Proof: The running time $T(n)$ of these operations is proportional to the number of nodes ν visited.

- Find / insert: $\nu=1+\langle$ the depth of the node \rangle.
- Remove: 〈the depth + at most the height of the node〉.
- In each case $T(n)=\mathrm{O}(h)$.

For a well-balanced BST, $T(n) \in \mathrm{O}(\log n)$ (logarithmic time).
In the worst case $T(n) \in \Theta(n)$ (linear time) because insertions and deletions may heavily destroy the balance.

Analysing BST: The Worst-case Time Complexity

BSTs of height $h \approx \log n$

BSTs of height $h \approx n$

Analysing BST: The Average-case Time Complexity

More balanced trees are more frequent than unbalanced ones.
Definition 3.12: The total internal path length, $S_{\tau}(n)$, of a binary tree τ is the sum of the depths of all its nodes.

- Average complexity of a successful search in τ : the average node depth, $\frac{1}{n} S_{\tau}(n)$, e.g. $\frac{1}{8} S_{\tau}(8)=\frac{15}{8}=1.875$ in this example.
- Average-case complexity of searching:
- Averaging $S_{\tau}(n)$ for all the trees of size n, i.e. for all possible n ! insertion orders, occurring with equal probability, $\frac{1}{n!}$.

The $\Theta(\log n)$ Average-case BST Operations

Let $S(n)$ be the average of the total internal path length, $S_{\tau}(n)$, over all BST τ created from an empty tree by sequences of n random insertions, each sequence considered as equiprobable.

Lemma 3.13: The expected time for successful and unsuccessful search (update, retrieval, insertion, and deletion) in such BST is $\Theta(\log n)$.

Proof: It should be proven that $S(n) \in \Theta(n \log n)$.

- Obviously, $S(1)=0$.
- Any n-node tree, $n>1$, contains a left subtree with i nodes, a root at height 0 , and a right subtree with $n-i-1$ nodes; $0 \leq i \leq n-1$.
- For a fixed $i, S(n)=(n-1)+S(i)+S(n-i-1)$, as the root adds 1 to the path length of each other node.

The $\Theta(\log n)$ Average-case BST Operations

Proof of Lemma 3.13 (continued):

- After summing these recurrences for $0 \leq i \leq n-1$ and averaging, just the same recurrence as for the average-case quicksort analysis is obtained:

$$
S(n)=(n-1)+\frac{2}{n} \sum_{i=0}^{n-1} S(i)
$$

- Therefore, $S(n) \in \Theta(n \log n)$, and the expected depth of a node is $\frac{1}{n} S(n) \in \Theta(\log n)$.
- Thus, the average-case search, update, retrieval and insertion time is in $\Theta(\log n)$.
- It is possible to prove (but in a more complicate way) that the average-case deletion time is also in $\Theta(\log n)$.
The BST allow for a special balancing, which prevents the tree height from growing too much, i.e. avoids the worst cases with linear time complexity $\Theta(n)$.

Self-balanced Search Trees

Balancing ensures that the total internal path lengths of the trees are close to the optimal value of $n \log n$.

- The average-case and the worst-case complexity of operations is $\mathrm{O}(\log n)$ due to the resulting balanced structure.
- But the insertion and removal operations take longer time on the average than for the standard binary search trees.

Balanced BST:

- AVL trees (1962: G. M. Adelson-Velskii and E. M. Landis).
- Red-black trees (1972: R. Bayer) - "symmetric binary B-trees"; the present name and definition: 1978; L. Guibas and R. Sedgewick.
- AA-trees (1993: A. Anderson).

Balanced multiway search trees:

- B-trees (1972: R. Bayer and E. McCreight).

Self-balancing BSTs: AVL Trees

Complete binary trees have a too rigid balance condition to be maintained when new nodes are inserted.

Definition 3.14: An AVL tree is a BST with the following additional balance property:

- for any node in the tree, the height of the left and right subtrees can differ by at most 1 .

The height of an empty subtree is -1 .
Advantages of the AVL balance property:

- Guaranteed height $\Theta(\log n)$ for an AVL tree.
- Less restrictive than requiring the tree to be complete.
- Efficient ways for restoring the balance if necessary.

Self-balancing BSTs: AVL Trees

Lemma 3.15: The height of an AVL tree with n nodes is $\Theta(\log n)$.
Proof: Due to the possibly different heights of subtrees, an AVL tree of height h may contain fewer than $2^{h+1}-1$ nodes of the complete tree.

- Let S_{h} be the size of the smallest AVL tree of height h.
- $S_{0}=1$ (the root only) and $S_{1}=2$ (the root and one child).
- The smallest AVL tree of height h has the smallest subtrees of height $h-1$ and $h-2$ by the balance property, so that

$$
S_{h}=S_{h-1}+S_{h-2}+1=F_{h+3}-1 \Leftrightarrow\left\{\begin{array}{r|cccccccc}
i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \ldots \\
h & & & 0 & 1 & 2 & 3 & 4 & \ldots \\
\hline F_{i} & 1 & 1 & 2 & 3 & 5 & 8 & 13 & \ldots \\
S_{h} & & & 1 & 2 & 4 & 7 & 12 & \ldots
\end{array}\right.
$$

where F_{i} is the $i^{\text {th }}$ Fibonacci number (recall Lecture 6).

Self-balancing BSTs: AVL Trees (Proof of Lemma 3.15 - cont.)

That $S_{h}=F_{h+3}-1$ is easily proven by induction:

- Base case: $S_{0}=F_{3}-1=1$ and $S_{1}=F_{4}-1=2$.
- Hypothesis: Let $S_{i}=F_{i+3}-1$ and $S_{i-1}=F_{i+2}-1$.
- Inductive step: Then

$$
S_{i+1}=S_{i}+S_{i-1}-1=\underbrace{F_{i+3}-1}_{S_{i}}+\underbrace{F_{i+2}-1}_{S_{i-1}}+1=F_{i+4}-1
$$

Therefore, for each AVL tree of height h and with n nodes:

$$
n \geq S_{h} \approx \frac{\varphi^{h+3}}{\sqrt{5}}-1 \text { where } \varphi \approx 1.618
$$

so that its height $h \leq 1.44 \lg (n+1)-1.33$.

- The worst-case height is at most 44% more than the minimum height for binary trees.
- The average-case height of an AVL tree is provably close to $\lg n$.

Self-balancing BSTs: AVL Trees

Rotation to restore the balance after BST insertions and deletions:

If there is a subtree of large height below the node a, the right rotation will decrease the overall tree height.

- All self-balancing binary search trees use the idea of rotation.
- Rotations are mutually inverse and change the tree only locally.
- Balancing of AVL trees requires extra memory and heavy computations.
- More relaxed efficient BSTs, r.g., red-black trees, are used more often in practice.

Self-balancing BSTs: Red-black Trees

Definition 3.17: A red-black tree is a BST such that

- Every node is coloured either red or black.
- Every non-leaf node has two children.
- The root is black.
- All children of a red node must be black.
- Every path from the root to a leaf must contain the same number of black nodes.

Theorem 3.18: If every path from the root to a leaf contains b black nodes, then the tree contains at least $2^{b}-1$ black nodes.

Self-balaning BSTs: Red-black Trees

Proof of Theorem 3.18:

- Base case: Holds for $b=1$ (either the black root only or the black root and one or two red children).
- Hypothesis: Let it hold for all red-black trees with b black nodes in every path.
- Inductive step: A tree with $b+1$ black nodes in every path and two black children of the root contains two subtrees with b black nodes just under the root and has in total at least $1+2 \cdot\left(2^{b}-1\right)=2^{b+1}-1$ black nodes.
- If the root has a red child, the latter has only black children, so that the total number of the black nodes can become even larger.

Self-balancing BSTs: Red-black and AA Trees

Searching in a red-black tree is logarithmic, $\mathrm{O}(\log n)$.

- Each path cannot contain two consecutive red nodes and increase more than twice after all the red nodes are inserted.
- Therefore, the height of a red-black tree is at most $2\lceil\lg n\rceil$.

No precise average-case analysis (only empirical findings or properties of red-black trees with n random keys):

- The average case: $\approx \lg n$ comparisons per search.
- The worst case: $<2 \lg n+2$ comparisons per search.
- $\mathrm{O}(1)$ rotations and $\mathrm{O}(\log n)$ colour changes to restore the tree after inserting or deleting a single node.

AA-trees: the red-black trees where the left child may not be red - are even more efficient if node deletions are frequent.

Balanced B-trees

The "Big-Oh" analysis is invalid if the assumed equal time complexity of elementary operations does not hold.

- External ordered databases on magnetic or optical disks.
- One disk access - hundreds of thousands of computer instructions.
- The number of accesses dominates running time.
- Even logarithmic worst-case complexity of red-black or AA-trees is unacceptable.
- Each search should involve a very small number of disk accesses.
- Binary tree search (with an optimal height $\lg n$) cannot solve the problem.
Height of an optimal m-ary search tree (m-way branching):

$$
\approx \log _{m} n, \text { i.e. } \approx \frac{\lg n}{\lg m}
$$

Balanced B-trees

Height of the optimal m-ary search tree with n nodes:

n	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}
$\left\lceil\log _{2} n\right\rceil$	17	20	24	27	30	33	36	39
$\left\lceil\log _{10} n\right\rceil$	5	6	7	8	9	10	11	12
$\left\lceil\log _{100} n\right\rceil$	3	3	4	4	5	5	6	6
$\left\lceil\log _{1000} n\right\rceil$	2	2	3	3	3	4	4	4

Multiway search tree of order $m=4$:

Data records are associated only with leaves (most of definitions).

Balanced B-trees

A B-tree of order m is an m-ary search tree such that:
(1) The root either is a leaf, or has $\mu \in\{2, \ldots, m\}$ children.
(2) There are $\mu \in\left\{\left\lceil\frac{m}{2}\right\rceil, \ldots, m\right\}$ children of each non-leaf node, except possibly the root.
(3) μ - 1 keys, $\left(\theta_{i}: i=1, \ldots, \mu-1\right)$, guide the search in each non-leaf node with μ children, θ_{i} being the smallest key in subtree $i+1$.
(4) All leaves at the same depth.
(5) Data items are in leaves, each leaf storing $\lambda \in\left\{\left\lceil\frac{l}{2}\right\rceil, \ldots, l\right\}$ items, for some l.

- Conditions 1-3: to define the memory space for each node.
- Conditions 4-5: to form a well-balanced tree.

Balanced B-trees

B-trees are usually named by their branching limits $\left\lceil\frac{m}{2}\right\rceil-m$: e.g., $2-3$ trees with $m=3$ or $2-4$ trees with $m=4$.
$m=4 ; \quad l=7$:
2-4 B-tree with the leaf storage size 7 ($2 . .4$ children per node and $4 . .7$ data items per leaf)

Balanced B-trees

Because the nodes are at least half full, a B-tree with $m \geq 8$ cannot be a simple binary or ternary tree.

- Simple data insertion if the corresponding leaf is not full.
- Otherwise, splitting a full leaf into two leaves, both having the minimum number of data items, and updating the parent node.
- If necessary, the splitting propagates up until finding a parent that need not be split or reaching the root.
- Only in the extremely rare case of splitting the root, the tree height increases, and a new root with two children (halves of the previous root) is created.

Data insertion, deletion, and retrieval in the worst case: about $\left\lceil\log _{\frac{m}{2}} n\right\rceil$ disk accesses.

- This number is practically constant if m is sufficiently big.

