

Binary Search Trees

Lecturer: Georgy Gimel'farb

COMPSCI 220 Algorithms and Data Structures

- 1 Properties of Binary Search Trees
- 2 Basic BST operations
- 3 The worst-case time complexity of BST operations
- **4** The average-case time complexity of BST operations
- **5** Self-balancing binary and multiway search trees
- 6 Self-balancing BSTs: AVL trees
- Self-balancing BSTs: Red-black trees
- 8 Balanced B-trees for external search

Binary Search Tree: Left-Right Ordering of Keys

Worst case

Outline

BST

Operations

Left-to-right numerical ordering in a BST: for every node i,

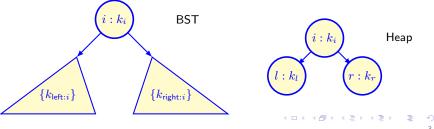
- the values of all the keys $k_{{\rm left}:i}$ in the left subtree are smaller than the key k_i in i and

Balancing

Red-black

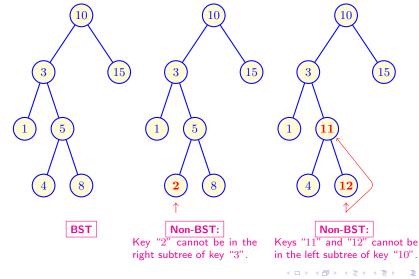
• the values of all the keys $k_{\text{right}:i}$ in the right subtree are larger than the key k_i in i: $\{k_{\text{left}:i}\} \ni l < k_i < r \in \{k_{\text{right}:i}\}$

Compare to the **bottom-up** ordering in a *heap* where the key k_i of every parent node i is greater than or equal to the keys k_l and k_r in the left and right child node l and r, respectively: $k_i \ge k_l$ and $k_i \ge k_r$.



 Outline
 BST
 Operations
 Worst case
 Average case
 Balancing
 AVL
 Red-black
 E

 Binary Search Tree:
 Left-Right Ordering of Keys



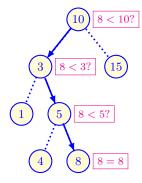
BST is an explicit *data structure* implementing the table ADT.

- BST are more complex than heaps: any node may be removed, not only a root or leaves.
- The only practical constraint: no duplicate keys (attach them all to a single node).

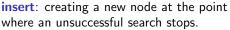
Basic operations:

- find a given search key or detect that it is absent in the BST.
- insert a node with a given key to the BST if it is not found.
- findMin: find the minimum key.
- findMax: find the maximum key.
- remove a node with a given key and restore the BST if necessary.

BST Operations Find / Insert a Node



Found node



< 10?

15

7 < 8?

7 < 3?

8

Inserted node

5

7 < 5?

BST Operations: FindMin / FindMax

Extremely simple: starting at the root, branch repeatedly left (findMin) or right (findMax) as long as a corresponding child exists.

- The root of the tree plays a role of the pivot in quicksort and quickselect.
- As in quicksort, the recursive traversal of the tree can sort the items:
 - 1 First visit the left subtree;
 - 2 Then visit the root, and
 - **3** Then visit the right subtree.

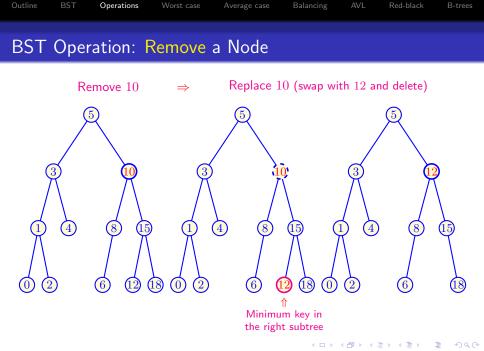
 $O(\log n)$ average-case and O(n) worst-case running time for find, insert, findMin, and findMax operations, as well as for selecting a single item (just as in quickselect).

The most complex because the tree may be disconnected.

- Reattachment must retain the ordering condition.
- Reattachment should not needlessly increase the tree height.

Standard method of removing a node i with c children:							
c	ACTION						
0	Simply remove the leaf <i>i</i> .						
1	Remove the node i after linking its child to its parent node.						
2	Swap the node i with the node j having the smallest key k_j						
	in the right subtree of the node <i>i</i> .						
	After swapping, remove the node i (as now it has at most						
	one right child).						

In spite of its asymmetry, this method cannot be really improved.



Analysing BST: The Worst-case Time Complexity

Lemma 3.11: The search, retrieval, update, insert, and remove operations in a BST all take time in O(h) in the worst case, where h is the height of the tree.

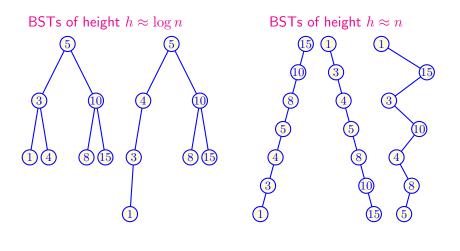
Proof: The running time T(n) of these operations is proportional to the number of nodes ν visited.

- Find / insert: $\nu = 1 + \langle \text{the depth of the node} \rangle$.
- Remove: (the depth + at most the height of the node).
- In each case T(n) = O(h).

For a well-balanced BST, $T(n) \in O(\log n)$ (logarithmic time).

In the worst case $T(n)\in \Theta(n)$ (linear time) because insertions and deletions may heavily destroy the balance.

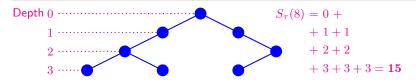
Analysing BST: The Worst-case Time Complexity



Analysing BST: The Average-case Time Complexity

More balanced trees are more frequent than unbalanced ones.

Definition 3.12: The total internal path length, $S_{\tau}(n)$, of a binary tree τ is the sum of the depths of all its nodes.



- Average complexity of a successful search in τ : the average node depth, $\frac{1}{n}S_{\tau}(n)$, e.g. $\frac{1}{8}S_{\tau}(8) = \frac{15}{8} = 1.875$ in this example.
- Average-case complexity of searching:
 - Averaging $S_{\tau}(n)$ for all the trees of size n, i.e. for all possible *n*! insertion orders, occurring with equal probability, $\frac{1}{n!}$.

The $\Theta(\log n)$ Average-case BST Operations

Let S(n) be the average of the total internal path length, $S_{\tau}(n)$, over all BST τ created from an empty tree by sequences of n random insertions, each sequence considered as equiprobable.

Lemma 3.13: The expected time for successful and unsuccessful search (update, retrieval, insertion, and deletion) in such BST is $\Theta(\log n)$.

Proof: It should be proven that $S(n) \in \Theta(n \log n)$.

- Obviously, S(1) = 0.
- Any *n*-node tree, n > 1, contains a left subtree with *i* nodes, a root at height 0, and a right subtree with n - i - 1 nodes; $0 \le i \le n-1.$
- For a fixed *i*, S(n) = (n-1) + S(i) + S(n-i-1), as the root adds 1 to the path length of each other node.

Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

The $\Theta(\log n)$ Average-case BST Operations

Proof of Lemma 3.13 (continued):

• After summing these recurrences for $0 \le i \le n-1$ and averaging, just the same recurrence as for the average-case quicksort analysis is obtained:

$$S(n) = (n-1) + \frac{2}{n} \sum_{i=0}^{n-1} S(i)$$

- Therefore, $S(n) \in \Theta(n \log n)$, and the expected depth of a node is $\frac{1}{n}S(n) \in \Theta(\log n)$.
- Thus, the average-case search, update, retrieval and insertion time is in $\Theta(\log n).$
- It is possible to prove (but in a more complicate way) that the average-case deletion time is also in $\Theta(\log n)$.

The BST allow for a special **balancing**, which prevents the tree height from growing too much, i.e. avoids the worst cases with linear time complexity $\Theta(n)$.

Balancing ensures that the total internal path lengths of the trees are close to the optimal value of $n \log n$.

- The average-case and the worst-case complexity of operations is $O(\log n)$ due to the resulting balanced structure.
- But the insertion and removal operations take longer time on the average than for the standard binary search trees.

Balanced BST:

- AVL trees (1962: G. M. Adelson-Velskii and E. M. Landis).
- Red-black trees (1972: R. Bayer) "symmetric binary B-trees"; the present name and definition: 1978; L. Guibas and R. Sedgewick.
- AA-trees (1993: A. Anderson).

Balanced multiway search trees:

• B-trees (1972: R. Bayer and E. McCreight).

Complete binary trees have a too rigid balance condition to be maintained when new nodes are inserted.

Definition 3.14: An AVL tree is a BST with the following additional balance property:

• for any node in the tree, the height of the left and right subtrees can differ by at most 1.

The height of an empty subtree is -1.

Advantages of the AVL balance property:

- Guaranteed height $\Theta(\log n)$ for an AVL tree.
- Less restrictive than requiring the tree to be complete.
- Efficient ways for restoring the balance if necessary.

Lemma 3.15: The height of an AVL tree with n nodes is $\Theta(\log n)$.

Proof: Due to the possibly different heights of subtrees, an AVL tree of height h may contain fewer than $2^{h+1}-1$ nodes of the complete tree.

- Let S_h be the size of the smallest AVL tree of height h.
- $S_0 = 1$ (the root only) and $S_1 = 2$ (the root and one child).
- The smallest AVL tree of height h has the smallest subtrees of height h-1 and h-2 by the balance property, so that

$$S_{h} = S_{h-1} + S_{h-2} + 1 = F_{h+3} - 1 \Leftrightarrow \begin{cases} i & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \dots \\ h & 0 & 1 & 2 & 3 & 4 & \dots \\ \hline F_{i} & 1 & 1 & 2 & 3 & 5 & 8 & 13 & \dots \\ S_{h} & 1 & 2 & 4 & 7 & 12 & \dots \end{cases}$$

where F_i is the *i*th Fibonacci number (recall Lecture 6).

Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: AVL Trees (Proof of Lemma 3.15 - cont.)

That $S_h = F_{h+3} - 1$ is easily proven by induction:

- Base case: $S_0 = F_3 1 = 1$ and $S_1 = F_4 1 = 2$.
- Hypothesis: Let $S_i = F_{i+3} 1$ and $S_{i-1} = F_{i+2} 1$.
- Inductive step: Then $S_{i+1} = S_i + S_{i-1} - 1 = \underbrace{F_{i+3} - 1}_{S_i} + \underbrace{F_{i+2} - 1}_{S_{i-1}} + 1 = F_{i+4} - 1$

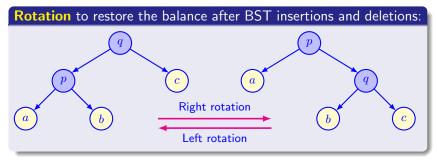
Therefore, for each AVL tree of height h and with n nodes:

$$n \geq S_h pprox rac{arphi^{h+3}}{\sqrt{5}} - 1$$
 where $arphi pprox 1.618$,

so that its height $h \le 1.44 \lg(n+1) - 1.33$.

- The worst-case height is at most 44% more than the minimum height for binary trees.
- The average-case height of an AVL tree is provably close to $\lg n$.

Self-balancing BSTs: AVL Trees

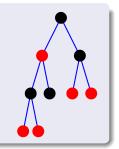


If there is a subtree of large height below the node a, the right rotation will decrease the overall tree height.

- All self-balancing binary search trees use the idea of rotation.
- Rotations are mutually inverse and change the tree only locally.
- Balancing of AVL trees requires extra memory and heavy computations.
- More relaxed efficient BSTs, r.g., red-black trees, are used more often in practice.

Definition 3.17: A red-black tree is a BST such that

- Every node is coloured either red or black.
- Every non-leaf node has two children.
- The root is **black**.
- All children of a red node must be black.
- Every path from the root to a leaf must contain the same number of **black** nodes.



Theorem 3.18: If every path from the root to a leaf contains b black nodes, then the tree contains at least $2^b - 1$ black nodes.

Proof of Theorem 3.18:

- Base case: Holds for b = 1 (either the black root only or the black root and one or two red children).
- **Hypothesis:** Let it hold for all red-black trees with *b* black nodes in every path.
- Inductive step: A tree with b+1 black nodes in every path and two black children of the root contains two subtrees with b black nodes just under the root and has in total at least $1+2 \cdot (2^b-1) = 2^{b+1}-1$ black nodes.
- If the root has a red child, the latter has only black children, so that the total number of the black nodes can become even larger.

Self-balancing BSTs: Red-black and AA Trees

Searching in a red-black tree is logarithmic, $O(\log n)$.

- Each path cannot contain two consecutive red nodes and increase more than twice after all the red nodes are inserted.
- Therefore, the height of a red-black tree is at most $2\lceil \lg n \rceil$.

No precise average-case analysis (only empirical findings or properties of red-black trees with n random keys):

- The average case: $\approx \lg n$ comparisons per search.
- The worst case: $< 2 \lg n + 2$ comparisons per search.
- O(1) rotations and $O(\log n)$ colour changes to restore the tree after inserting or deleting a single node.

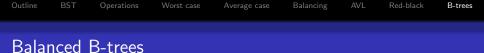
AA-trees: the red-black trees where the left child may not be red – are even more efficient if node deletions are frequent.

The "Big-Oh" analysis is invalid if the assumed equal time complexity of elementary operations does not hold.

- External ordered databases on magnetic or optical disks.
 - One disk access hundreds of thousands of computer instructions.
 - The number of accesses dominates running time.
- Even logarithmic worst-case complexity of red-black or AA-trees is unacceptable.
 - Each search should involve a very small number of disk accesses.
 - Binary tree search (with an optimal height $\lg n$) cannot solve the problem.

Height of an optimal *m*-ary search tree (*m*-way branching):

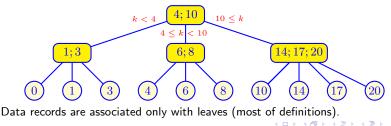
 $\approx \log_m n$, i.e. $\approx \frac{\lg n}{\lg m}$



Height of the optimal m-ary search tree with n nodes:

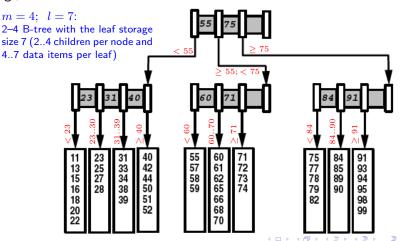
n	10^{5}	10^{6}	10^{7}	10^{8}	10^{9}	10^{10}	10^{11}	10^{12}
$\lceil \log_2 n \rceil$	17	20	24	27	30	33	36	39
$\lceil \log_{10} n \rceil$	5	6	7	8	9	10	11	12
$\lceil \log_{100} n \rceil$	3	3	4	4	5	5	6	6
$\lceil \log_{1000} n \rceil$	2	2	3	3	3	4	4	4

Multiway search tree of order m = 4:

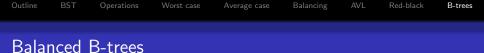


A **B-tree** of order m is an m-ary search tree such that:

- **1** The root either is a leaf, or has $\mu \in \{2, \ldots, m\}$ children.
- 2 There are $\mu \in \{\lceil \frac{m}{2} \rceil, ..., m\}$ children of each non-leaf node, except possibly the root.
- 3 μ-1 keys, (θ_i: i = 1,..., μ-1), guide the search in each non-leaf node with μ children, θ_i being the smallest key in subtree i + 1.
- 4 All leaves at the same depth.
- **5** Data items are in leaves, each leaf storing λ ∈ { [^l/₂],..., l } items, for some l.
 - Conditions 1–3: to define the memory space for each node.
 - Conditions 4–5: to form a well-balanced tree.



26 / 27



Because the nodes are at least half full, a B-tree with $m\geq 8$ cannot be a simple binary or ternary tree.

• Simple data insertion if the corresponding leaf is not full.

 \circ Otherwise, splitting a full leaf into two leaves, both having the minimum number of data items, and updating the parent node.

- If necessary, the splitting propagates up until finding a parent that need not be split or reaching the root.
- Only in the extremely rare case of splitting the root, the tree height increases, and a new root with two children (halves of the previous root) is created.

Data insertion, deletion, and retrieval in the worst case: about $\left\lceil \log_{\frac{m}{2}} n \right\rceil$ disk accesses.

• This number is practically constant if m is sufficiently big.