
Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Binary Search Trees

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

1 Properties of Binary Search Trees

2 Basic BST operations

3 The worst-case time complexity of BST operations

4 The average-case time complexity of BST operations

5 Self-balancing binary and multiway search trees

6 Self-balancing BSTs: AVL trees

7 Self-balancing BSTs: Red-black trees

8 Balanced B-trees for external search

2 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Binary Search Tree: Left-Right Ordering of Keys

Left-to-right numerical ordering in a BST: for every node i,

• the values of all the keys kleft:i in the left subtree are smaller than
the key ki in i and

• the values of all the keys kright:i in the right subtree are larger than
the key ki in i: {kleft:i} 3 l < ki < r ∈ {kright:i}

Compare to the bottom-up ordering in a heap where the key ki of every
parent node i is greater than or equal to the keys kl and kr in the left
and right child node l and r, respectively: ki ≥ kl and ki ≥ kr.

BSTi : ki

{kleft:i} {kright:i}

Heap

l : kl

i : ki

r : kr

3 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Binary Search Tree: Left-Right Ordering of Keys

BST

10

153

1 5

4 8

10

153

1 5

2 8

↑

Non-BST:
Key “2” cannot be in the
right subtree of key “3”.

10

153

1 11

4 12

↑

Non-BST:
Keys “11” and “12” cannot be
in the left subtree of key “10”.

4 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Basic BST Operations

BST is an explicit data structure implementing the table ADT.

• BST are more complex than heaps: any node may be
removed, not only a root or leaves.

• The only practical constraint: no duplicate keys (attach them
all to a single node).

Basic operations:

• find a given search key or detect that it is absent in the BST.

• insert a node with a given key to the BST if it is not found.

• findMin: find the minimum key.

• findMax: find the maximum key.

• remove a node with a given key and restore the BST if
necessary.

5 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

BST Operations Find / Insert a Node

10

153

1 5

4 8

8 < 10?

8 < 3?

8 < 5?

8 = 8

Found node

find: a successful binary search.

10

153

1 5

4 8

7

7 < 10?

7 < 3?

7 < 5?

7 < 8?

Inserted node

insert: creating a new node at the point
where an unsuccessful search stops.

6 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

BST Operations: FindMin / FindMax

Extremely simple: starting at the root, branch repeatedly left
(findMin) or right (findMax) as long as a corresponding child
exists.

• The root of the tree plays a role of the pivot in quicksort

and quickselect.

• As in quicksort, the recursive traversal of the tree can sort
the items:

1 First visit the left subtree;
2 Then visit the root, and
3 Then visit the right subtree.

O(log n) average-case and O(n) worst-case running time for find,
insert, findMin, and findMax operations, as well as for selecting a
single item (just as in quickselect).

7 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

BST Operation: Remove a Node

The most complex because the tree may be disconnected.

• Reattachment must retain the ordering condition.

• Reattachment should not needlessly increase the tree height.

Standard method of removing a node i with c children:

c Action

0 Simply remove the leaf i.
1 Remove the node i after linking its child to its parent node.
2 Swap the node i with the node j having the smallest key kj

in the right subtree of the node i.
After swapping, remove the node i (as now it has at most

one right child).

In spite of its asymmetry, this method cannot be really improved.

8 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

BST Operation: Remove a Node

Remove 10 ⇒

5

3

41

0 2

8 15

6 12 18

10

Replace 10 (swap with 12 and delete)

5

3

41

0 2

8 15

6 12 18

10

12

⇑
Minimum key in
the right subtree

5

3

41

0 2

8 15

6 18

12

9 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Analysing BST: The Worst-case Time Complexity

Lemma 3.11: The search, retrieval, update, insert, and remove
operations in a BST all take time in O(h) in the worst case, where
h is the height of the tree.

Proof: The running time T (n) of these operations is proportional
to the number of nodes ν visited.

• Find / insert: ν = 1 + 〈the depth of the node〉.
• Remove: 〈the depth + at most the height of the node〉.
• In each case T (n) = O(h). �

For a well-balanced BST, T (n) ∈ O(logn) (logarithmic time).

In the worst case T (n) ∈ Θ(n) (linear time) because insertions and deletions
may heavily destroy the balance.

10 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Analysing BST: The Worst-case Time Complexity

BSTs of height h ≈ log n

1

3

5

10

154 8

1

3

4

5

10

158

BSTs of height h ≈ n

1

3

4

5

8

10

15 1

3

4

5

8

10

15

1

15

3

10

4

8

5

11 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Analysing BST: The Average-case Time Complexity

More balanced trees are more frequent than unbalanced ones.

Definition 3.12: The total internal path length, Sτ (n), of a binary
tree τ is the sum of the depths of all its nodes.

Depth 0

1

2

3

Sτ (8) = 0 +

+ 1 + 1

+ 2 + 2

+ 3 + 3 + 3 = 15

• Average complexity of a successful search in τ : the average
node depth, 1

nSτ (n), e.g. 1
8
Sτ (8) = 15

8
= 1.875 in this example.

• Average-case complexity of searching:
• Averaging Sτ (n) for all the trees of size n, i.e. for all possible
n! insertion orders, occurring with equal probability, 1

n! .

12 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

The Θ(log n) Average-case BST Operations

Let S(n) be the average of the total internal path length, Sτ (n), over all BST

τ created from an empty tree by sequences of n random insertions, each

sequence considered as equiprobable.

Lemma 3.13: The expected time for successful and unsuccessful
search (update, retrieval, insertion, and deletion) in such BST is Θ(log n).

Proof: It should be proven that S(n) ∈ Θ(n log n).

• Obviously, S(1) = 0.

• Any n-node tree, n > 1, contains a left subtree with i nodes,
a root at height 0, and a right subtree with n− i− 1 nodes;
0 ≤ i ≤ n− 1.

• For a fixed i, S(n) = (n− 1) + S(i) + S(n− i− 1), as the
root adds 1 to the path length of each other node.

13 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

The Θ(log n) Average-case BST Operations

Proof of Lemma 3.13 (continued):

• After summing these recurrences for 0 ≤ i ≤ n− 1 and
averaging, just the same recurrence as for the average-case
quicksort analysis is obtained:

S(n) = (n− 1) + 2
n

n−1∑
i=0

S(i)

• Therefore, S(n) ∈ Θ(n log n), and the expected depth of a
node is 1

nS(n) ∈ Θ(log n).

• Thus, the average-case search, update, retrieval and insertion
time is in Θ(log n).

• It is possible to prove (but in a more complicate way) that the
average-case deletion time is also in Θ(log n). �

The BST allow for a special balancing, which prevents the tree height from
growing too much, i.e. avoids the worst cases with linear time complexity Θ(n).

14 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balanced Search Trees

Balancing ensures that the total internal path lengths of the trees
are close to the optimal value of n log n.

• The average-case and the worst-case complexity of operations is
O(log n) due to the resulting balanced structure.

• But the insertion and removal operations take longer time on the
average than for the standard binary search trees.

Balanced BST:

• AVL trees (1962: G. M. Adelson-Velskii and E. M. Landis).

• Red-black trees (1972: R. Bayer) – “symmetric binary B-trees”;

the present name and definition: 1978; L. Guibas and R. Sedgewick.

• AA-trees (1993: A. Anderson).

Balanced multiway search trees:

• B-trees (1972: R. Bayer and E. McCreight).

15 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: AVL Trees

Complete binary trees have a too rigid balance condition to be
maintained when new nodes are inserted.

Definition 3.14: An AVL tree is a BST with the following
additional balance property:

• for any node in the tree, the height of the left and right
subtrees can differ by at most 1.

The height of an empty subtree is −1.

Advantages of the AVL balance property:

• Guaranteed height Θ(log n) for an AVL tree.

• Less restrictive than requiring the tree to be complete.

• Efficient ways for restoring the balance if necessary.

16 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: AVL Trees

Lemma 3.15: The height of an AVL tree with n nodes is Θ(log n).

Proof: Due to the possibly different heights of subtrees, an AVL tree of
height h may contain fewer than 2h+1 − 1 nodes of the complete tree.

• Let Sh be the size of the smallest AVL tree of height h.

• S0 = 1 (the root only) and S1 = 2 (the root and one child).

• The smallest AVL tree of height h has the smallest subtrees of
height h− 1 and h− 2 by the balance property, so that

Sh = Sh−1 + Sh−2 + 1 = Fh+3 − 1⇔



i 1 2 3 4 5 6 7 . . .
h 0 1 2 3 4 . . .
Fi 1 1 2 3 5 8 13 . . .
Sh 1 2 4 7 12 . . .

where Fi is the ith Fibonacci number (recall Lecture 6).

17 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: AVL Trees (Proof of Lemma 3.15 – cont.)

That Sh = Fh+3 − 1 is easily proven by induction:

• Base case: S0 = F3 − 1 = 1 and S1 = F4 − 1 = 2.

• Hypothesis: Let Si = Fi+3 − 1 and Si−1 = Fi+2 − 1.

• Inductive step: Then
Si+1 = Si + Si−1 − 1 = Fi+3 − 1︸ ︷︷ ︸

Si

+Fi+2 − 1︸ ︷︷ ︸
Si−1

+1 = Fi+4 − 1

Therefore, for each AVL tree of height h and with n nodes:

n ≥ Sh ≈ ϕh+3

√
5
− 1 where ϕ ≈ 1.618,

so that its height h ≤ 1.44 lg(n+ 1)− 1.33. �

• The worst-case height is at most 44% more than the minimum height for
binary trees.

• The average-case height of an AVL tree is provably close to lgn.

18 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: AVL Trees

Rotation to restore the balance after BST insertions and deletions:

q

p c

a b

p

qa

cb
Right rotation

Left rotation

If there is a subtree of large height below the node a, the right rotation will
decrease the overall tree height.

• All self-balancing binary search trees use the idea of rotation.

• Rotations are mutually inverse and change the tree only locally.

• Balancing of AVL trees requires extra memory and heavy computations.

• More relaxed efficient BSTs, r.g., red-black trees, are used more often in
practice.

19 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: Red-black Trees

Definition 3.17: A red-black tree is a BST such that

• Every node is coloured either red or black.

• Every non-leaf node has two children.

• The root is black.

• All children of a red node must be black.

• Every path from the root to a leaf must
contain the same number of black nodes.

Theorem 3.18: If every path from the root to a leaf contains b
black nodes, then the tree contains at least 2b − 1 black nodes.

20 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balaning BSTs: Red-black Trees

Proof of Theorem 3.18:

• Base case: Holds for b = 1 (either the black root only or the black
root and one or two red children).

• Hypothesis: Let it hold for all red-black trees with b black nodes in
every path.

• Inductive step: A tree with b+ 1 black nodes in every path and
two black children of the root contains two subtrees with b black
nodes just under the root and has in total at least
1 + 2 · (2b − 1) = 2b+1 − 1 black nodes.

• If the root has a red child, the latter has only black children, so that
the total number of the black nodes can become even larger. �

21 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Self-balancing BSTs: Red-black and AA Trees

Searching in a red-black tree is logarithmic, O(log n).

• Each path cannot contain two consecutive red nodes and increase
more than twice after all the red nodes are inserted.

• Therefore, the height of a red-black tree is at most 2dlg ne.

No precise average-case analysis (only empirical findings or properties of
red-black trees with n random keys):

• The average case: ≈ lg n comparisons per search.

• The worst case: < 2 lg n+ 2 comparisons per search.

• O(1) rotations and O(log n) colour changes to restore the tree after
inserting or deleting a single node.

AA-trees: the red-black trees where the left child may not be red – are
even more efficient if node deletions are frequent.

22 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Balanced B-trees

The “Big-Oh” analysis is invalid if the assumed equal time
complexity of elementary operations does not hold.

• External ordered databases on magnetic or optical disks.
• One disk access – hundreds of thousands of computer

instructions.
• The number of accesses dominates running time.

• Even logarithmic worst-case complexity of red-black or
AA-trees is unacceptable.
• Each search should involve a very small number of disk

accesses.
• Binary tree search (with an optimal height lg n) cannot solve

the problem.

Height of an optimal m-ary search tree (m-way branching):
≈ logm n, i.e. ≈ lgn

lgm

23 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Balanced B-trees

Height of the optimal m-ary search tree with n nodes:

n 105 106 107 108 109 1010 1011 1012

dlog2 ne 17 20 24 27 30 33 36 39
dlog10 ne 5 6 7 8 9 10 11 12
dlog100 ne 3 3 4 4 5 5 6 6
dlog1000 ne 2 2 3 3 3 4 4 4

Multiway search tree of order m = 4:

0 1 3 4 6 8 10 14 17 20

4; 10

1; 3 6; 8 14; 17; 20

4 ≤ k < 10

10 ≤ kk < 4

Data records are associated only with leaves (most of definitions).

24 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Balanced B-trees

A B-tree of order m is an m-ary search tree such that:

1 The root either is a leaf, or has µ ∈ {2, . . . ,m} children.

2 There are µ ∈
{⌈

m
2

⌉
, . . . ,m

}
children of each non-leaf node,

except possibly the root.

3 µ− 1 keys, (θi : i = 1, . . . , µ− 1), guide the search in each non-leaf
node with µ children, θi being the smallest key in subtree i+ 1.

4 All leaves at the same depth.

5 Data items are in leaves, each leaf storing λ ∈
{⌈

l
2

⌉
, . . . , l

}
items,

for some l.

• Conditions 1–3: to define the memory space for each node.

• Conditions 4–5: to form a well-balanced tree.

25 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Balanced B-trees

B-trees are usually named by their branching limits
⌈
m
2

⌉
– m:

e.g., 2–3 trees with m = 3 or 2–4 trees with m = 4.

m = 4; l = 7:
2–4 B-tree with the leaf storage
size 7 (2..4 children per node and
4..7 data items per leaf) < 55

≥ 55;< 75

≥ 75

<
2
3

2
3
..
3
0

3
1
..
3
9

≥
4
0

<
6
0

6
0
..
7
0

≥
7
1

<
8
4

8
4
..
9
0

≥
9
1

26 / 27



Outline BST Operations Worst case Average case Balancing AVL Red-black B-trees

Balanced B-trees

Because the nodes are at least half full, a B-tree with m ≥ 8 cannot be a
simple binary or ternary tree.

◦ Simple data insertion if the corresponding leaf is not full.

◦ Otherwise, splitting a full leaf into two leaves, both having the
minimum number of data items, and updating the parent node.

• If necessary, the splitting propagates up until finding a parent that
need not be split or reaching the root.

• Only in the extremely rare case of splitting the root, the tree height
increases, and a new root with two children (halves of the previous
root) is created.

Data insertion, deletion, and retrieval in the worst case: about
⌈
log m

2
n
⌉

disk accesses.

• This number is practically constant if m is sufficiently big.

27 / 27


	Properties of Binary Search Trees
	Basic BST operations
	The worst-case time complexity of BST operations
	The average-case time complexity of BST operations
	Self-balancing binary and multiway search trees
	Self-balancing BSTs: AVL trees
	Self-balancing BSTs: Red-black trees
	Balanced B-trees for external search

