
Outline Data search Types Sequential Binary search

Data Searching and Binary Search

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 16



Outline Data search Types Sequential Binary search

1 Data search problem

2 Static and dynamic search

3 Sequential search

4 Sorted lists and binary search

2 / 16



Outline Data search Types Sequential Binary search

Data Search in a Large Database

Searching in a database D of records, such that each record has a
key to use in the search.

The search problem: Given a search key k, either

• return the record associated with k in D (a successful search:
if k occurs several times, return any occurrence), or

• indicate that k is not found, without altering D (an unsuccessful
search).

The purpose of the search:

• to access data in the record for processing, or

• to update information in the record, or

• to insert a new record or delete the record found.

3 / 16



Outline Data search Types Sequential Binary search

Tables: General-Case Data Structures for Searching

An associative array, or dictionary, or a table:

• A key and a value are linked by association.

• An abstract data type (ADT) relating a disjoint set of keys to
an arbitrary set of values.

• Keys of entries may not have any ordering relation and may
be of unknown range.

• No upper bound on the table size: an arbitrary number of
different data items can be maintained simultaneously.

• No analogy with a conventional word dictionary, having a
lexicographical order.

Definition 3.1 (Textbook): The table ADT is a set of ordered
pairs, or table entries (k, v) where k is an unique key and v is a
data value associated with the key k.

4 / 16



Outline Data search Types Sequential Binary search

Basic Operations for Tables

Abstractly, a table is a mapping (function) from keys to values.

Given a search key k, table search has to find the table entry
(k, v) containing that key. After the search, one may:

• Retrieve the found entry (k, v), e.g., to process v;

• Remove, or delete the found entry from the table;

• Update its value v;

• Insert a new entry with key k if the table has no such entry.

Additional operations on a table:

• Initialize a table to the empty one;

• Indicate an unsuccessful search (i.e., that there is no entry
with the given key).

5 / 16



Outline Data search Types Sequential Binary search

Types of Search

• Static search: unalterable (fixed in advance) databases; no
updates, deletions, or insertions.

• Dynamic search: alterable databases (allowable insertions,
deletions, and updates).

Key Associated value v

Code k City Country State/Place

AKL 271 Auckland New Zealand North Island
DCA 2080 Washington USA District of Columbia (D.C.)
FRA 3822 Frankfurt Germany Hesse
SDF 12251 Louisville USA Kentucky

A unique integer key k = 262c0 +26c1 + c2 for 3-letter identifiers: (ci; i = 0, 1, 2

– ordinal numbers of A..Z in the English alphabet: A – 0; B – 1; . . . , Z – 25).

Basic implementations of the table ADT: lists and trees.

• An elementary operation: a query or update of a list element
or tree node, or comparison of two of them.

6 / 16



Outline Data search Types Sequential Binary search

Sequential Search in Unsorted Lists

Starting at the head of a list and examining elements one by one
until finding the desired key or reaching the end of the list.

Exercise 3.1.1. Both successful and unsuccessful sequential search
have worst-case and average-case time complexity Θ(n).

Proof: The unsuccessful search explores each of n keys, so the
worst- and average-case time is Θ(n).

The successful search examines n keys in the worst case
and n

2 keys on the average, which is still Θ(n). �

• The sequential search is the only option for unsorted arrays
and linked lists of records.

• A sorted list implementation allows for much better search
based on the divide-and-conquer paradigm.

7 / 16



Outline Data search Types Sequential Binary search

Binary Search in a Sorted List L of Records

L = {(ki, vi) : i = 1, . . . , n; k1 < k2 < . . . < kn}

Recursive binary search for the key k:

1 If the list is empty, return “not found”, otherwise

2 Choose the key km of the middle element of the list and
• if km = k, return its record, otherwise
• if km > k, make a recursive call on the head sublist, otherwise
• if km < k, make a recursive call on the tail sublist.

Iterative implementation for each sublist (kl, kl+1, . . . , kr) of keys:

• The middle index m =
⌊
l+r
2

⌋
.

• If km = k, then return the record (km, vm) and terminate iterations.

• If km > k, then r = m− 1.

• If km < k, then l = m+ 1.

• If l > r, return “Item not found” and terminate iterations.

8 / 16



Outline Data search Types Sequential Binary search

Non-recursive (Iterative) Binary Search in Array

The performance of binary search on an array is much better than on a linked

list because of the constant time access to a given element.

begin BinarySearch (a sorted integer array k = (k0, k1, . . . , kn−1)
of keys associated with items, a search key k)

l← 0; r ← n− 1
while l ≤ r do m←

⌊
l+r
2

⌋
if km < k then l← m+ 1

else if km > k then r ← m− 1
else return m

end if
end while
return ItemNotFound

end

9 / 16



Outline Data search Types Sequential Binary search

Faster Binary Search with Two-way Comparisons

begin BinarySearch2 (a sorted integer array k = (k0, k1, . . . , kn−1)
of keys associated with items, a search key k)

l← 0; r ← n− 1
while l < r do m←

⌊
l+r
2

⌋
if km < k then l← m+ 1

else r ← m
end if

end while
if kl = k then return l

else return ItemNotFound
end if

end

10 / 16



Outline Data search Types Sequential Binary search

Binary Search in Array {k0 = 7, . . . , k15 = 99} for Key k = 42

0

7

1

14

2

27

3

33

4

42

5

49

6

51

7

53

8

67

9

70

10

77

11

81

12

89

13

94

14

95

15

99

i

ki

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

l=0

↓
m=7

↓
r=15

↓

l=0

↓
m=3

↓
r=6

↓

l=4

↓
m=5

↓
r=6

↓

l=m=r=4

↓

[1]

[2]

[2]

[3]

[3]

[4]

[4]

Successful search: return key position 4

11 / 16



Outline Data search Types Sequential Binary search

Tree Structure of Binary Search: Binary Search Tree

0

7

1

14

2

27

3

33

4

42

5

49

6

51

7

53

8

67

9

70

10

77

11

81

12

89

13

94

14

95

15

99

7

0

14

1

27

2

33

3

42

4

49

5

51

6

53

7

67

8

70

9

77

10

81

11

89

12

94

13

95

14

99

15

[0..6] [8..15]

[0..2] [4..6] [8..10] [12..15]

[0..0] [2..2] [4..4] [6..6] [8..8] [10..10] [12..12] [14..15]

[15..15]

[l..r] – range of indices (array positions)

Definition 3.6 (Textbook). A binary search tree
(BST) is a binary tree that satisfies the following
ordering relation: for every node i in the tree, the
values of all the keys in the left subtree are smaller
than the key in i and the values of all the keys in
the right subtree are greater than the key in i.

12 / 16



Outline Data search Types Sequential Binary search

Binary Search: Worst-Case Time Complexity Θ(log n)

The complete binary tree of n = 2ν − 1 keys (each internal node

has 2 children); ν{n} = 1{1}, 2{3}, 3{7}, . . .:

ν = 1 ν = 2 ν = 3

• The tree height is ν − 1 since the tree is balanced.

• Each tree level l contains 2l nodes:
• l = 0 – the root (one node).
• l = 1, . . . , ν − 2 – internal nodes: 2l at each level l.
• l = ν − 1 – the 2ν−1 leaves.

• l + 1 comparisons to find a key of level l (see Slide 11).

• The worst case: ν = lg(n+ 1) comparisons.

The worst-case time complexity of unsuccessful and successful
binary search is Θ(log n).

13 / 16



Outline Data search Types Sequential Binary search

Binary Search: Average-Case Time Complexity Θ(log n)

Lemma: The average-case time complexity of successful and
unsuccessful binary search in a balanced tree is Θ(log n).

Proof: The depth◦) of the tree is d = dlg(n+ 1)e − 1 ≡ dνe − 1.

• At least half of the tree nodes have the depth at least d− 1.

• The average depth over all nodes is at least d
2 ∈ Θ(log n).

• The average depth over all nodes of an arbitrary (not
necessarily balanced) binary tree is Ω(log n).

The expected search time for an arbitrary balanced tree is equal to
the average balanced tree depth Θ(log n). �

◦) Definitions (see Textbook, Appendix D7):

• Depth of a node – the length (number of edges) of the unique path to the root.

• Height of a node – the length of the longest path from the node to a leaf.

• Height of the tree – the height of the root.

14 / 16



Outline Data search Types Sequential Binary search

Interpolation Search

Improvement of binary search if it is possible to guess where the
desired key sits.

• A simple practical example: the search for C or X in a phone
directory.

• Practical if the sorted keys are almost uniformly distributed
over their range.

• Binary search: the middle position m =
⌊
l+r
2

⌋
= l +

⌈
r−l
2

⌉
.

• Interpolation search: the predicted position of key k if the
keys are iniformly distributed between kl and kr:

m = l + dρ(r − l)e ≡ l +

⌈
k − kl
kr − kl

(r − l)
⌉

15 / 16



Outline Data search Types Sequential Binary search

Dynamic Binary Tree Search

Static binary search is converted into a dynamic binary tree
search by allowing for insertion and deletion of data records.

• Dynamic binary tree search makes actual use of the binary
search tree (BST) data structure.

• The BST data structure is constructed by linking data records.

• A BST allows for inserting a new node.

• Any existing node of a BST may be removed.

• Using an array implementation of a sorted list, both successful
and unsuccessful search, retrieval, and updating take time in
Θ(log n) on average and in the worst case.
• But insertion and deletion are in Θ(n) in the worst and

average case.

• Using a linked list, all the above operations take time in Θ(n).

16 / 16


	Data search problem
	Static and dynamic search
	Sequential search
	Sorted lists and binary search

