
Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Heaps, Heap Operations, and Heapsort

Lecturer: Georgy Gimel’farb

COMPSCI 220 Algorithms and Data Structures

1 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

1 Complete binary trees and heaps

2 Algorithm heapsort

3 Inserting a new heap node

4 Deleting the maximum key from a heap

5 Analysis of heapsort: linearithmic time in all cases

6 Implementation of heapsort

2 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Algorithm Heapsort

Proposed by J. W. J. (Bill) Williams in 1964, heapsort improves
over selection sort due to a special binary-tree data structure.

• This special type of a complete binary tree is called a heap.

• The worst-case Θ(n log n) complexity (like mergesort).

Basic steps of heapsort:

1 Convert an array into a maximum (or alternatively – a minimum)

heap in linear time Θ(n).

2 Sort the heap in Θ(n log n) time by deleting n times the
maximum item from the maximum heap (or the minimum item

from the minimum heap, respectively).
• Each deletion of the maximum (or minimum) item takes the

logarithmic time, Θ(log n).

3 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Algorithm Heapsort: First Publication

4 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Complete Binary Tree: Definition 2.19 (Textbook)

• A binary tree, filled completely at all levels except, possibly,
the bottom level, filled from left to right with no missing
nodes.

• Each leaf is of depth h (the tree height) or h− 1.

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8

I
9

J
10

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8

I
9

J
10

Linear array representation of the heap:
0 1 2 3 4 5 6 7 8 9 ←Indices

←Positions

5 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Complete Binary Tree: Basic Properties

[
2h ≤ n ≤ 2h+1 − 1

]
nodes in a complete binary tree of height h:

h = 0

n = 1

h = 1;n = 2..3 h = 2;n = 4..7

Storing a complete binary tree in a linear array

Node positions – by the level-order traversal (the root position is 1).

• Positions p = i + 1 of the array elements a[i] with indices i.

If the node is in the position p then:

• the parent node is in the position
⌊p
2

⌋
;

• the left child is in the position 2p, and

• the right child is in the position 2p + 1.

6 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Positions of Nodes: Example 2.21 (Textbook)

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8

I
9

J
10

A
1

B
2

C
3

D
4

E
5

F
6

G
7

H
8

I
9

J
10 ←Positions

• The node in position p = 1 is the root (no parent node).

• The nodes in positions p = 6, 7, 8, 9, 10 are the leaves (no children).

• A left child of the root, p = 1, is in position 2p = 2.

• A right child of the root, p = 1, is in position 2p+ 1 = 3.

• For the node in position p = 4, the parent in position
⌊

4
2

⌋
= 2, a left child in

position 2p = 8, and a right child in position 2p+ 1 = 9.

• For the node in position p = 5, the parent in position
⌊

5
2

⌋
= 2, and the only left

child in position 2p = 10.

7 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Binary Heap: Definition 2.22 (Textbook)

A (maximum) heap is a complete binary tree having a numerical
key associated with each node, such that the key of each parent
node is greater than or equal to the keys of its child nodes.

The heap order provides easy access to the maximum key
associated with the root.

• Alternatively, a minimum heap has the key of each parent node, which is
less than or equal to the keys of its child nodes.

• Then the minimum key is associated with the root.

Lemma 2.24 (Textbook): The height of a complete binary tree with n nodes is
at most blgnc.

Proof: A complete binary tree of height h contains n nodes:
2h ≤ n ≤ 2h+1 − 1; so that h ≤ lgn < h+ 1.

8 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Maximum Heap and Its Array Representation

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10 ←Positions

Algorithm heapsort

1 Given an input list, build a heap by successively inserting the elements.

2 Delete the maximum repeatedly, arranging the elements in the output list
in reverse order of deletion, until the heap is empty.

This is a variant of selection sort using a different data structure.

9 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node into a Heap

Lemma 2.25 (Textbook): Inserting a new, (n + 1)-st, node into a
heap of n elements takes logarithmic time, O(log n).

Proof:

1 Create a new, (n + 1)-st, leaf position.

2 Place the new node with its associated key in this leaf.

3 If the inserted key preserves the heap order, the insertion is
complete.

4 Otherwise, bubble up, or percolate up the new key towards
the root by repeatedly swapping it with its parent until the
heap order is restored.

5 There are at most h swaps, where h is the heap height, so
that the running time is O(log n).

10 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node: Example 2.26 (Textbook)

To insert an 11th element, 75, into the heap of size n = 10 in Slide 9
takes three steps:

1 Create position n + 1 = 11 to initially place the new key, 75.

2 Swap the new key with its parent key, 8, in position 5 =
⌊
11
2

⌋
to

restore the heap order.

3 Repeat the same swap for the parent key, 65, in position 2 =
⌊
5
2

⌋
.

4 Terminate the process as the heap order is now restored.

Position 1 2 3 4 5 6 7 8 9 10 11
Index 0 1 2 3 4 5 6 7 8 9 10

Initial array 91 65 70 31 8 50 25 20 15 2

Array at step 1 91 65 70 31 8 50 25 20 15 2 75
Array at step 2 91 65 70 31 75 50 25 20 15 2 8

Array at steps 3–4 91 75 70 31 65 50 25 20 15 2 8

11 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node: Example 2.26

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10 ← p

Initial heap

12 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node: Example 2.26

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10

75
11

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10

75
11 ← p

Step 1: Initial position of the new key

13 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node: Example 2.26

91
1

65
2

70
3

31
4

75
5

50
6

25
7

20
8

15
9

2
10

8
11

91
1

65
2

70
3

31
4

75
5

50
6

25
7

20
8

15
9

2
10

8
11 ← p

Step 2: Percolate up the new key

14 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Inserting a Node: Example 2.26

91
1

75
2

70
3

31
4

65
5

50
6

25
7

20
8

15
9

2
10

8
11

91
1

75
2

70
3

31
4

65
5

50
6

25
7

20
8

15
9

2
10

8
11 ← p

Step 3/4: Percolate up the new key and terminate

15 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key from a Heap

Lemma 2.27 (Textbook): Deleting the maximum key from a heap
of n elements takes logarithmic time, O(log n), in the worst case.

Proof: The deletion reduces the heap size by one; therefore,

1 Eliminate the last leaf node and replace the deleted key in the
root by the key associated with this leaf.

2 Then percolate the root key down the tree:
• Compare the new root key to each child.
• If at least one child is greater than the parent, swap the new

root key with the larger child.

3 Repeat the percolation process until restoring the heap order.

4 There are at most h moves, where h is the heap height, so
that the running time is O(log n).

Due to percolating down the previous leaf key, the process usually terminates
at or near the leaves.

16 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key: Example 2.28 (Textbook)

Deleting the maximum key, 91, from the heap in Slide 9, takes 3 steps:

1 Place key 2 from the eliminated position 10 at the root.

2 Percolate the new root key down by comparing to its children 65
and 70 in positions 2 = 2 · 1 and 3 = 2 · 1 + 1, respectively, and
swapping with the larger child, 70, to restore the order.

3 Repeat the same swap for the children 50 and 25 in positions
6 = 2 · 3 and 7 = 2 · 3 + 1.

4 Terminate the process, because the heap order is now correct.

Position 1 2 3 4 5 6 7 8 9 10
Index 0 1 2 3 4 5 6 7 8 9

Initial array 91 65 70 31 8 50 25 20 15 2

Array at step 1 2 65 70 31 8 50 25 20 15
Array at step 2 70 65 2 31 8 50 25 20 15
Array at steps 3–4 70 65 50 31 8 2 25 20 15

17 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key: Example 2.28

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10

91
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
10 ← p

Initial heap

18 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key: Example 2.28

2
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9

2
1

65
2

70
3

31
4

8
5

50
6

25
7

20
8

15
9 ← p

Step 1: Eliminate the last leaf and place its key to the root

19 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key: Example 2.28

70
1

65
2

2
3

31
4

8
5

50
6

25
7

20
8

15
9

70
1

65
2

2
3

31
4

8
5

50
6

25
7

20
8

15
9 ← p

Step 2: Percolate the placed key down

20 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Deleting the Maximum Key: Example 2.28

70
1

65
2

50
3

31
4

8
5

2
6

25
7

20
8

15
9

70
1

65
2

50
3

31
4

8
5

2
6

25
7

20
8

15
9 ← p

Step 3: Percolate the placed key down and terminate

21 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Time Complexity of Heapsort

Lemma 2.29 (Textbook): Heapsort runs in time in Θ(n log n) in
the best, worst, and average case.

Proof.

• The heap can be constructed in time O(n log n).
• Actually, even in time O(n), but this does not affect the result.

• Then heapsort repeats n times the deletion of the maximum
key and restoration of the heap property (each resoration is
logarithmic in the best, worst, and average case).

Therefore, the total time is1:

log(n) + log(n− 1) + . . . + log(1) = log(n!) ∈ Θ(n log n)

1The Stirling’s approximation: n! ≈ nne−n
√

2πn.

22 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Building a Heap in Linear Time, Θ(n)

Heap as a recursive structure: left subheap← root→ right subheap

Lemma 2.31: A heap can be built from a list of size n in Θ(n) time.

Proof:

• To form the heap, each of the two subtrees attached to the root are

transformed into heaps of height at most h− 1.

• The left subtree is always of height h− 1, whereas the right
subtree could be of height h− 2.

• In the worst case the root percolates down the tree for at most h steps
that takes time O(h).

• Thus the worst-case time T (h) to build a heap of height at most h is
given by the recurrence T (h) = 2T (h− 1) + ch.

• Thus T (h) ∈ O(2h), or T (h) ∈ O(n) because h = blgnc, i.e. 2h ≤ n.

• The lower bound is Θ(n) since every input element must be inspected. �

Non-recursive percolate-down procedure: recursion is eliminated by applying this
procedure in reverse level order.

23 / 24



Outline Heap Heapsort Insertion Deletion Θ(n log n) Implementation

Algorithm Heapsort: Pseudocode

algorithm heapSort

Input: array a[0..n− 1]
begin

Building a heap from array a[0..n− 1] in reverse level order

for i←
⌊
n
2

⌋
− 1 while i ≥ 0 step i← i− 1 do

percolateDown(a, i, n) restore the heap in subarray a[i..n− 1]

end for
Successive ordering of the heapified array a[0..n− 1]

for i← n− 1 while i ≥ 1 step i← i− 1 do
swap(a[0], a[i]) delete the maximum key to place it in order

percolateDown(a, 0, i) restore the heap in subarray a[0..i− 1]

end for
end

24 / 24


	Complete binary trees and heaps
	Algorithm heapsort
	Inserting a new heap node
	Deleting the maximum key from a heap
	Analysis of heapsort: linearithmic time in all cases
	Implementation of heapsort

